Nowadays, the industrial sector takes up a significant portion of the world's total energy consumption. This sector is responsible for half of the total energy consumed in the world. Therefore, efficiency in the industrial sector becomes an essential issue. One of the main factors triggering the high energy consumption in this sector is that many machines are left idle. Idle machines during the manufacturing process require electricity and other energies. This research aimed to develop a firefly algorithm that can minimize the energy consumption in the hybrid flow shop scheduling problem. This algorithm is used to determine the optimum order of the jobs. The ultimate goal is to minimize energy consumption. The experiment on the algorithm was conducted by employing iteration and population variations. The research results show that population and iteration affect the quality of the hybrid flow shop scheduling solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.