Abstract-Before the evolution of the Wireless Sensor Networks (WSN) technology, many production wells in the oil and gas industry were suffering from the gas hydration formation process, as most of them are remotely located away from the host location. By taking the advantage of the WSN technology, it is possible now to monitor and predict the critical conditions at which hydration will form by using any computerized model. In fact, most of the developed models are based on two well-known hand calculation methods which are the Specific gravity and K-Factor methods. In this research, the proposed work is divided into two phases; first, the development of a three prediction models using the Neural Network algorithm (ANN) based on the specific gravity charts, the K-Factor method and the production rates of the flowing gas mixture in the process pipelines. While in the second phase, two WSN prototype models are designed and implemented using National Instruments WSN hardware devices. Power analysis is carried out on the designed prototypes and regression models are developed to give a relation between the sensing nodes (SN) consumed current, Node-to-Gateway distance and the operating link quality. The prototypes controller is interfaced with a GSM module and connected to a web server to be monitored via mobile and internet networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.