Members of the Wiskott-Aldrich Syndrome Protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation by the Arp2/3 complex. The WASP relative, WAVE, regulates lamellipodia formation within a 400 kDa, hetero-pentameric WAVE Regulatory Complex (WRC). The WRC is inactive toward the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. We report the 2.3 Å crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting how these signals stimulate WRC activity toward the Arp2/3 complex. Spatial proximity of the Rac binding site and a large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.
Purpose The purpose of this paper is to investigate the impact of social media marketing activities on brand loyalty, value consciousness and brand consciousness. Design/methodology/approach A self-administered questionnaire was developed and administered to a convenience sample of 346 undergraduate students Findings The findings of this research indicated that social media marketing has a significant effect on brand loyalty; brand consciousness and value consciousness mediate the relationship between social media marketing and brand loyalty. Originality/value This study confirms the growing importance of social media marketing. It also provides insights for marketers on envisioning brand loyalty.
SUMMARY Members of the Wiskott-Aldrich Syndrome Protein (WASP) family control actin dynamics in eukaryotic cells through stimulating the actin nucleating activity of the Arp2/3 complex. The prevailing paradigm for WASP regulation invokes allosteric relief of autoinhibition by diverse upstream activators. Here we demonstrate an additional level of regulation that is superimposed upon allostery: dimerization increases the affinity of active WASP species for Arp2/3 complex by up to 180-fold, greatly enhancing actin assembly by this system. This finding explains a large and apparently disparate set of observations under a common mechanistic framework. These include WASP activation by the bacterial effector EspFu and a large number of SH3 domain proteins, the effects on WASP of membrane localization/clustering and assembly into large complexes, and cooperativity between different family members. Allostery and dimerization act in hierarchical fashion, enabling WASP/WAVE proteins to integrate different classes of inputs to produce a wide range of cellular actin responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.