Despite the utility and benefits of omnidirectional images in robotics and automotive applications, there are no datasets of omnidirectional images available with semantic segmentation, depth map, and dynamic properties. This is due to the time cost and human effort required to annotate ground truth images. This paper presents a framework for generating omnidirectional images using images that are acquired from a virtual environment. For this purpose, we demonstrate the relevance of the proposed framework on two well-known simulators: CARLA Simulator, which is an open-source simulator for autonomous driving research, and Grand Theft Auto V (GTA V), which is a very high quality video game. We explain in details the generated OmniScape dataset, which includes stereo fisheye and catadioptric images acquired from the two front sides of a motorcycle, including semantic segmentation, depth map, intrinsic parameters of the cameras and the dynamic parameters of the motorcycle. It is worth noting that the case of two-wheeled vehicles is more challenging than cars due to the specific dynamic of these vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.