The cell-free culture supernatant (CFCS) obtained from Streptomyces (S.) grisues (accession code KJ623766) fermentation, locally isolated Streptomyces strains from Egyptian soil sample, showed potent cytotoxic activity against Caco2 cell line. Fermentation was carried out in a 14 L laboratory fermenter, under optimum conditions of 28 °C, 200 rpm, 5 standard liters per minute (SLPM) aeration, 2 bar airflow pressure and uncontrolled pH. After 72 h of incubation, the cell-free culture supernatant (CFCS) was collected and extracted using ethyl acetate (1:1, v/v) at pH 7.0. Using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide (MTT) assay, the ethyl acetate extract showed potential cytotoxic activity against Caco2 with CD 50 of 14 µg/mL. This showed an increase in cytotoxic activity by about 1.6 folds when compared to results obtained from shake flask (CD 50 22 µg/mL). Production improvement of cytotoxic activity was carried out also by genetic manipulation using a dose of 4 KiloGray (KGy) of gamma radiation. Fifteen out of forty-seven mutants showed higher potential cytotoxic activities when compared to that of the wild-type strain of S.griseus KJ623766. Mutants G31, G44, and G45 showed the most potent cytotoxic activities where they exhibited about 7 folds increase in potential cytotoxic activity with CD 50 of 3.2 ±0.2, 2.9 ±0.1 and 3.25 ±0.43 µg/mL, respectively.
The inadequate therapeutic opportunities associated with carbapenem-resistant Pseudomonas aeruginosa (CRPA) clinical isolates impose a search for innovative strategies. Therefore, our study aimed to characterize and evaluate two locally isolated phages formulated in a hydrogel, both in vitro and in vivo, against CRPA clinical isolates. The two phages were characterized by genomic, microscopic, phenotypic characterization, genomic analysis, in vitro and in vivo analysis in a Pseudomonas aeruginosa-infected skin thermal injury rat model. The two siphoviruses belong to class Caudovirectes and were named vB_Pae_SMP1 and vB_Pae_SMP5. Each phage had an icosahedral head of 60 ± 5 nm and a flexible, non-contractile tail of 170 ± 5 nm long, while vB_Pae_SMP5 had an additional base plate containing a 35 nm fiber observed at the end of the tail. The hydrogel was prepared by mixing 5% w/v carboxymethylcellulose (CMC) into the CRPA propagated phage lysate containing phage titer 108 PFU/mL, pH of 7.7, and a spreadability coefficient of 25. The groups were treated with either Phage vB_Pae_SMP1, vB_Pae_SMP5, or a two-phage cocktail hydrogel cellular subepidermal granulation tissues with abundant records of fibroblastic activity and mixed inflammatory cell infiltrates and showed 17.2%, 25.8%, and 22.2% records of dermal mature collagen fibers, respectively. In conclusion, phage vB_Pae_SMP1 or vB_Pae_SMP5, or the two-phage cocktails formulated as hydrogels, were able to manage the infection of CRPA in burn wounds, and promoted healing at the injury site, as evidenced by the histopathological examination, as well as a decrease in animal mortality rate. Therefore, these phage formulae can be considered promising for clinical investigation in humans for the management of CRPA-associated skin infections.
Background Infection with extensive-drug-resistant (XDR) carbapenem-resistant (CR) Gram-negative bacteria (GNB) are viewed as a serious threat to human health because of the limited therapeutic options. This imposes the urgent need to find agents that could be used as adjuvants or combined with carbapenems to enhance or restore the susceptibility of XDR CR- GNB. Therefore, this study aimed to examine the effect of propranolol (PR) in combination with Meropenem (MEM) on the susceptibility profile of XDR CR-GNB recovered from severely infected patients as well as to evaluate combining MEM with either tigecycline (TGC) or amikacin (AK). Methods A total of 59 non-duplicate CR- GNB were investigated for carbapenemase production by the major phenotypic methods. Molecular identification of five major carbapenemase-coding genes was carried out using polymerase chain reactions (PCR). Antimicrobial susceptibility tests were carried out using standard methods. Phenotypic and genotypic relatedness was carried out using the heatmap and ERIC PCR analysis. PR, 0.5 -1 mg/mL against the resulting non-clonal XDR CR-GNB pathogens were evaluated by calculating the MIC decrease factor (MDF). A combination of MEM with either AK or TGC was performed using the checkerboard assay. Results A total of 21 (35.6%) and 38 (64.4%) CR-GNB isolates were identified as enterobacterial isolates (including 16 (27.1%) Klebsiella Pneumoniae and 5 (8.5%) Escherichia coli) and non-fermentative bacilli (including, 23 (39%), Acinetobacter baumannii, and 15 (25.4%) Pseudomonas aeruginosa). The heatmap and ERIC PCR analysis resulted in non-clonal 28 XDR CR isolates. PR, at a concentration of 0.5 mg /ml, decreased MICs values of the tested XDR CR isolates (28; 100%) and restored susceptibility of only 4 (14.3%) isolates. However, PR (1 mg/mL) when combined with MEM has completely (28; 100%) restored the susceptibility of the tested XDR CR- GNB to MEM. The MEM + AK and MEM + TGC combination showed mostly additive effects (92.8% and 71.4%, respectively). Conclusion PR at a concentration of 1 mg/mL restored the susceptibility of XDR CR- GNB to MEM which is considered a promising result that should be clinically investigated to reveal its suitability for clinical use in patients suffering from these life-threatening pathogens.
Background: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. Methods: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. Results: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as β- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. Conclusions: This is the first report about the production of β- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.
Natural products particularly microbial metabolites have been the mainstay of cancer chemotherapy and are likely to provide many of the lead structures and derivatives with new biological activities. In this research, the production of some potential cytotoxic metabolites from Streptomyces (S.) griseus isolate KJ623766 was carried out in 14 L laboratory fermenter under specified optimum conditions (28°C temperature, 200 RPM rotation speed, uncontrolled PH, 3 vvm aeration and 2 bar airflow pressure). After 72 hrs of incubation, the cell free culture supernatant (CFCS) was collected and extracted using ethyl acetate (1:1, v/v) at pH 7.0. Using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide (MTT) assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined with CD50 of 14 µg/ml and 20 µg/ml, respectively. Bioassay guided fractionation of the ethyl acetate extract using different chromatographic techniques had led to the purification of the cytotoxic metabolites coded W1, R1 and R2 with reproducible amounts of 20, 5, and 1.5 mg/l, respectively. The structures of respective metabolites were determined based on the mass, 1D and 2D NMR spectroscopic analysis and were identified as genistein, β-rhodomycinone and γ- rhodomycinone, respectively. Accordingly, S. griseus isolate KJ623766 can be used as a potential industrial strain for the commercial production of the isoflavonoid genistein, as well as for the production of β-and γ- rhodomycinone to be used for the construction of new derivatives with more potent cytotoxic activities of the anthracycline family. To the best of our knowledge, this is the first report about the production of the isoflavonoid genistein by S. griseus KJ623766.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.