Negation is a linguistic phenomenon that can cause sentences to have their meanings reversed. It frequently inverts affirmative sentences into negative ones, affecting the polarity; therefore, the sentiment of the text also changes accordingly. Negation can be expressed differently, making it somewhat challenging to detect. As a result, detecting negation is critical for Sentiment Analysis (SA) system development and improvement and will increase classifier accuracy, but it also poses a significant conceptual and technical challenge. This paper aims to survey and gather the most recent research related to detecting negation in SA. Many researchers have worked and performed methods, including algorithmic, machine, and deep learning approaches such as Decision Tree (DT), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Naive Bayesian (NB), Logistic Regression (LR), Artificial Neural Networks (ANNs), Recurrent Neural Networks (RNNs), Bidirectional Long Short-Term Memory (BiLSTM), and other hybrid methods such as rule-based and machine learning, lexicon and machine learning, machine learning and deep learning. In addition, this paper points out the gaps and future research directions in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.