Background Coronavirus disease 2019 (COVID-19) was announced in early December 2019. The pandemic situation is declared. This study aimed to evaluate the role of biomarkers in estimating the severity and predicting the prognosis of COVID-19. Results A total of 116 confirmed patients were included in this study. The patients were evaluated clinically. The disease severity was assessed. The measured and calculated laboratory tests were done. The primary outcome is the 30-day mortality. Patients were assigned to the severe (14.7%) and non-severe (85.3%) groups. At IL-6 level of 32.3 pg/mL (the highest Youden’s index = 0.77), IL-6 can differentiate severe from non-severe patients with 82.4% sensitivity and 94.4% specificity. IL-6 can predict the severity [odds ratio of 87.7 (95% CI = 18.9-408.2) (P < 0.0001)]. After adjustment to the significant clinical and laboratory parameters, IL-6 had an adjusted odds ratio of 30.8 (95% CI = 1.1-728.3) (P = 0.046). A high CRP/albumin ratio of > 11.4 was associated with COVID-19 mortality [hazard ratio = 59.9 (95% CI = 7.4–488.3) (P < 0.0001)]. High CRP/albumin ratio had an adjusted hazard ratio of 26.5 (95% CI = 2.6-270.7) after adjustment of age and presence of co-morbidities (P = 0.006). Conclusion IL-6 level could effectively discriminate COVID-19 severity. CRP/albumin ratio was an independent risk factor for 30-day mortality rate in patients with COVID-19. IL-6 and CRP/albumin ratio seem to be valuable biomarkers in evaluating the severity and prognosis of COVID-19, respectively.
The current study aimed to assess the antiulcerogenic impact of mesenchymal bone marrow stem cells (BMMSCs) against gastric ulcer induced by the use of piroxicam in rats and to compare this effect with the antiulcer drug “Pantoloc ®” proton pump inhibitors. The study included histological, histochemical, immunohistochemical and ultrastructural examination in stomach of rats in different study groups. In the ulcerated group, the glandular region of the stomach displayed clear mucosal lesions occurring as perforations along the stomach axis. In addition, stomach displayed degeneration of surface mucous cells accompanied by pyknosis, vacuolation among parietal cells in ishmus region, basal region with vacuolated chief cells and karyolitic nucleus of parietal cells. Moreover, Stomach sections of ulcer model rats showed intensive immunoreactivity to cytokeratin 20, Cox 2 and PCNA. Findings of the present study have shown that BMMSCs have an ameliorative effect against piroxicam-induced gastric ulcer in rats. Collectively, the proposed work has shown that BMMSCs have a curative capacity as an antiulcer due to their high antioxidant activity. Further studies are required in molecular levels to understand the mechanism of action during treatment.
The present study aimed to investigate the protective role of berberine (BER) against Plasmodium chabaudi-induced infection in mice. Animals were divided into three groups. Group I served as a vehicle control. Group II and group III were infected with 1000 P. chabaudi infected erythrocytes. Group III was gavaged with 100 μl of 10 mg/kg berberine chloride for 10 days. All mice were sacrificed at day 10 post-infection. The percentage of parasitemia was significantly reduced more than 30%, after treatment of mice with BER. Infection caused marked hepatic injuries as indicated by histopathological alterations as evidenced by the presence of hepatic lobular inflammatory cellular infiltrations, dilated sinusoids, vacuolated hepatocytes, increased number of Kupffer cells and the malaria pigment, hemozoin. These changes in livers led to the increased histological score. Also, infection induced a significant increase in liver alanine aminotransferase and aspartate aminotransferase and a significant increase in the total leucocytic count. Moreover, mice became anemic as proved by the significant decrease in erythrocyte number and haemoglobin content. BER showed a significant protective potential by improving the above mentioned parameters. Based on these results, it is concluded that berberine could offer protection against hepatic tissue damage.
Background: This study investigates the effects of nano-curcumin on gene expression of insulin and insulin receptor in diabetic rats. Forty female rats were divided into four groups (ten rats for each). The first group was non-diabetic rats acting as negative control and rats of the second group were rendered diabetic by STZ served as positive controls. The third one was induced diabetic and received oral Diamicron for 3 weeks. The fourth was rendered diabetic and administrated oral nano-curcumin for 3 weeks. Results: A significant increase of blood glucose was showed in diabetic rats with significant reduction of insulin level compared to non-diabetic controls. The gene expression of insulin and insulin receptor were more significant in diabetic untreated rats compared to the control non-diabetic group. The induction of curcumin as well as Diamicron to diabetic rats normalized significantly their blood sugar level. Also, curcumin-treated rats indicated significant higher in gene expression of insulin and insulin receptor than positive and negative controls. Conclusion: The results suggest that nano-curcumin could be used as antidiabetic therapy, induced hypoglycemia, and increase the gene expression of insulin and insulin receptor in STZ-induced diabetic rats. More studies are needed to illustrate the definite mechanism of action of nano-curcumin concerning the upregulation of gene expression of the above-mentioned genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.