In recent years, Blockchain technology has been highly valued and disruptive. Several research has presented a merge between blockchain and current application i.e. medical, supply chain, and e-commerce. Although Blockchain architecture does not have a standard yet, IBM, MS, AWS offer BaaS (Blockchain as a Service). In addition to the current public chains i.e. Ethereum, NEO, and Cardeno. There are some differences between several public ledgers in terms of development and architecture. This paper introduces the main factors that affect integration of Artificial Intelligence with Blockchain. As well as, how it could be integrated for forecasting and automating; building self-regulated chain.
Mobile edge computing (MEC) provides effective cloud services and functionality at the edge device, to improve the quality of service (QoS) of end users by offloading the high computation tasks. Currently, the introduction of deep learning (DL) and hardware technologies paves a method in detecting the current traffic status, data offloading, and cyberattacks in MEC. This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC (AIMDO-SMEC) systems. The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks (SNN) to determine the traffic status in the MEC system. Also, an adaptive sampling cross entropy (ASCE) technique is utilized for data offloading in MEC systems. Moreover, the modified salp swarm algorithm (MSSA) with extreme gradient boosting (XGBoost) technique was implemented to identification and classification of cyberattack that exist in the MEC systems. For examining the enhanced outcomes of the AIMDO-SMEC technique, a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDO-SMEC technique with the minimal completion time of tasks (CTT) of 0.680.
Early detection of Parkinson's Disease (PD) using the PD patients' voice changes would avoid the intervention before the identification of physical symptoms. Various machine learning algorithms were developed to detect PD detection. Nevertheless, these ML methods are lack in generalization and reduced classification performance due to subject overlap. To overcome these issues, this proposed work apply graph long short term memory (GLSTM) model to classify the dynamic features of the PD patient speech signal. The proposed classification model has been further improved by implementing the recurrent neural network (RNN) in batch normalization layer of GLSTM and optimized with adaptive moment estimation (ADAM) on network hidden layer. To consider the importance of feature engineering, this proposed system use Linear Discriminant analysis (LDA) for dimensionality reduction and Sparse Auto-Encoder (SAE) for extracting the dynamic speech features. Based on the computation of energy content transited from unvoiced to voice (onset) and voice to voiceless (offset), dynamic features are measured. The PD datasets is evaluated under 10 fold cross validation without sample overlap. The proposed smart PD detection method called RNN-GLSTM-ADAM is numerically experimented with persistent phonations in terms of accuracy, sensitivity, and specificity and Matthew correlation coefficient. The evaluated result of RNN-GLSTM-ADAM extremely improves the PD detection accuracy than static feature based conventional ML and DL approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.