In this paper, we propose a new method based on texture analysis for the early diagnosis of bone disease such as osteoporosis. Our proposed method is based on a combination of four methods. First, bone X-ray images are enhanced using the algorithm of Retinex. Then, the enhanced images are analyzed using the fully anisotropic Morlet wavelet. This step is followed by the quantification of the anisotropy of the images using the Rényi entropy. Finally, the Rényi entropies are used as entries for a neural network. Applied on two different populations composed of osteoporotic (OP) patients and control (CT) subjects, a classification rate of 95% is achieved which provides a good discrimination between OP patients and CT subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.