Gliomas, which account for nearly a quarter of all primary CNS tumors, present significant contemporary therapeutic challenges, particularly the highest-grade variant (glioblastoma multiforme), which has an especially poor prognosis. These difficulties are due to the tumor's aggressiveness and the adverse effects of radio/chemotherapy on the brain. Stem cell therapy is an exciting area of research being explored for several medical issues. Neural stem cells, normally present in the subventricular zone and the hippocampus, preferentially migrate to tumor masses. Thus, they have two main advantages: They can minimize the side effects associated with systemic radio/chemotherapy while simultaneously maximizing drug delivery to the tumor site. Another feature of stem cell therapy is the variety of treatment approaches it allows. Stem cells can be genetically engineered into expressing a wide variety of immunomodulatory substances that can inhibit tumor growth. They can also be used as delivery vehicles for oncolytic viral vectors, which can then be used to combat the tumorous mass. An alternative approach would be to combine stem cells with prodrugs, which can subsequently convert them into the active form upon migration to the tumor mass. As with any therapeutic modality still in its infancy, much of the research regarding their use is primarily based upon knowledge gained from animal studies, and a number of ongoing clinical trials are currently investigating their effectiveness in humans. The aim of this review is to highlight the current state of stem cell therapy in the treatment of gliomas, exploring the different mechanistic approaches, clinical applicability, and the existing limitations.
Acinetobacter baumannii represents a major health threat, in particular among immunocompromised cancer patients. The rise in carbapenem-resistant A. baumannii , and the development of resistance to the last-resort antimicrobial agent colistin, complicates the management of A. baumannii outbreaks and increases mortality rates.
Infection with multiple drug resistant (MDR) Escherichia coli poses a life threat to immunocompromised pediatric cancer patients. Our aim is to genotypically characterize the plasmids harbored in MDR E. coli isolates recovered from bacteremic patients of Children's Cancer Hospital in Egypt 57357 (CCHE 57357). In this study, 21 carbapenem-resistant E. coli (CRE) isolates were selected that exhibit Quinolones and Aminoglycosides resistance. Plasmid shotgun sequencing was performed using Illumina nextgeneration sequencing platform. Isolates demonstrated resistant to all beta-lactams, carbapenems, aminoglycosides and quinolones. Of the 32 antimicrobial resistant genes identified that exceeded the analysis cutoff coverage, the highest represented genes were aph(6)-Id, sul2, aph(3″)-Ib, aph(3′)-Ia, sul1, dfrA12, TEM-220, NDM-11. Isolates employed a wide array of resistance mechanisms including antibiotic efflux, antibiotic inactivation, antibiotic target replacements and antibiotic target alteration. Sequenced isolates displayed diverse insertion sequences, including IS26, suggesting dynamic reshuffling of the harbored plasmids. Most isolates carried plasmids originating from other bacterial species suggesting a possible horizontal gene transfer. Only two isolates showed virulence factors with iroA gene cluster which was found in only one of them. Outside the realms of nosocomial infections among patients in hospitals, our results indicate a transfer of resistant genes and plasmids across different organisms. Escherichia coli represents the most frequent sources of blood stream and urinary tract infections worldwide. A continual increase in E. coli antibiotic resistance burdens medical facilities throughout the world by causing difficult to treat infections among patients 1,2. There has been a particular concern regarding the increase in Extended-Spectrum Beta-Lactamase (ESBL)-producing and carbapenem-resistant E. coli. carbapenem-resistant E. coli (CRE) have become resistant to the majority of available antibiotics, including carbapenems which are a last-resort treatment for multidrug-resistant pathogens. This is often accompanied by resistance to fluoroquinolones and aminoglycosides 3,4. The increase in antimicrobial resistance (AMR) frequency presents a global healthcare challenge by limiting the choices of antimicrobials that can be used in the treatment of bacterial infections 5,6. Mobile elements like transposons, integrons and plasmids frequently carry Multiple Drug Resistance (MDR) genetic motifs. These elements can be transferred from foodborne pathogens to human pathogens, increasing their virulence 7. This method has enabled the rapid propagation of AMR among several pathogenic bacterial genera to humans, including E. coli 8. CRE-encoding plasmids are now regarded as the primary vector facilitating this transmission between bacteria 9 .
Autism is a neurodevelopmental disorder with indisputable evidence for a genetic component. This work studied the association of autism with genetic variations in neurotransmitter-related genes, including MAOA uVNTR, MAOB rs1799836, and DRD2 TaqI A in 53 autistic patients and 30 healthy individuals. The study also analyzed sequence variations of miR-431 and miR-21. MAOA uVNTR was genotyped by PCR, MAOB and DRD2 polymorphisms were analyzed by PCR-based RFLP, and miR-431 and miR-21 were sequenced. Low expressing allele of MAOA uVNTR was frequently higher in female patients compared to that in controls (OR = 2.25). MAOB G allele frequency was more significantly increased in autistic patients than in controls (P < 0.001 for both males and females). DRD2 A1+ genotype increased autism risk (OR = 5.1). Severity of autism tends to be slightly affected by MAOA/B genotype. Plasma MAOB activity was significantly reduced in G than in A allele carrying males. There was no significant difference in patients and maternal plasma MAOA/B activity compared to controls. Neither mutations nor SNPs in miR-431 and miR-21 were found among studied patients. This study threw light on some neurotransmitter-related genes suggesting their potential role in Autism pathogenesis that warrants further studies and much consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.