Sulfur particles with a conductive polymer coating of poly(3,4ethylene dioxythiophene) "PEDOT" were prepared by dielectric barrier discharge (DBD) plasma technology under atmospheric conditions (low temperature, ambient pressure). We report a solvent-free, low-cost, low-energyconsumption, safe, and low-risk process to make the material development and production compatible for sustainable technologies. Different coating protocols were developed to produce PEDOT-coated sulfur powders with electrical conductivity in the range of 10 −8 −10 −5 S/cm. The raw sulfur powder (used as the reference) and (low-, optimum-, high-) PEDOT-coated sulfur powders were used to assemble lithium−sulfur (Li−S) cells with a high sulfur loading of ∼4.5 mg/cm 2 . Long-term galvanostatic cycling at C/10 for 100 cycles showed that the capacity fade was mitigated by ∼30% for the cells containing the optimum-PEDOT-coated sulfur in comparison to the reference Li−S cells with raw sulfur. Rate capability, cyclic voltammetry, and electrochemical impedance analyzes confirmed the improved behavior of the PEDOT-coated sulfur as an active material for lithium−sulfur batteries. The Li−S cells containing optimum-PEDOT-coated sulfur showed the highest reproducibility of their electrochemical properties. A wide variety of bulk and surface characterization methods including conductivity analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and NMR spectroscopy were used to explain the chemical features and the superior behavior of Li−S cells using the optimum-PEDOT-coated sulfur material. Moreover, postmortem [SEM and Brunauer−Emmett−Teller (BET)] analyzes of uncoated and coated samples allowed us to exclude any significant effect at the electrode scale even after 70 cycles.
Sulfur particles were coated with conductive polymer layers by dielectric barrier discharge (DBD) plasma technology under atmospheric conditions (ambient pressure and low temperature). The DBD plasma process is a dry and sustainable (solvent-free, limited energy consumption) technique compatible with upscaling. Different conductive coated sulfur materials were produced and labeled as “PEDOT-S” [poly(3,4-ethylene dioxythiophene-sulfur)], “PANI-S” (polyaniline-sulfur), “PTs-S” (polythiophene-sulfur), and “PPy-S” (polypyrrole-sulfur). The corresponding electrical conductivities were measured at 10–5, 10–6, 10–7, and 10–8 S/cm, respectively. The role of the conductive coating is to enhance the electrochemical performance of Li–S cells by improving the electronic conductivity of the sulfur particles and preventing the well-known polysulfide shuttle phenomenon. A vast range of characterization methods including conductivity analysis, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and carbon-13 NMR (nuclear magnetic resonance spectroscopy) were used to assess the chemical characteristics using the different conductive polymer-coated sulfur materials. In the coated sulfur samples, fragmentation of aromatic rings was observed, 88% for the PTs-S and 42% for the PEDOT-S, while it is very limited for the PANI-S. Such a phenomenon has never been reported in the literature. The uncoated and coated sulfur powders were used (as active material) in positive electrodes of Li–S cells with a relatively high sulfur loading of ∼4.5 mg/cm2 using LiPAA (lithium polyacrylate) as an (aqueous) binder. Long-term galvanostatic cycling at C/10 and multi-C-rate tests showed the capacity fade and rate capability losses to be highly mitigated for cells containing conductive polymer-coated sulfur in comparison to cells using the uncoated sulfur. Kinetic investigations by cyclic voltammetry and electrochemical impedance spectroscopy analyses undoubtedly confirm improved electron and Li-ion transport within the electrodes containing conductive polymer-coated sulfur. The electrochemical performance can be ranked as PEDOT-S > PANI-S > PTs-S > PPy-S > raw sulfur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.