Egypt has recently inaugurated a mega development project aiming to alleviate the overpopulation along the Nile River and to meet the looming food gap. Toshka is a promising area where groundwater-dependent activities are being expanded adjacent to Lake Nasser. Thus, it is of utmost importance to provide a sustainable development approach and to assess the resulting environmental implications. Accordingly, a coupled groundwater flow and transport model was invoked. The generated model was successfully calibrated for the observed water levels and salinity. The proposed exploitation regime of 102 wells each pumping 1000 m3/day was simulated for a 100-year test period. The maximum resulting drawdown was about 25 m, compatible with the advocated sustainable restriction limit. Climate change (CC) impacts of reducing the lake’s storage and increasing the crops’ water requirements were investigated. The lake’s water level fluctuations were a key factor in the aquifer hydraulics and flow direction. The drawdown breakthrough considering the CC catastrophic scenario (RCP8.5) has increased by about 20%. The developed solute transport model was utilized to simulate the salinity spatial distribution and the lateral movement of leaking pollutants from the underway activities. Cultivation activities were found feasible up to 80 km away from the lake border where salinity does not exceed 2000 ppm. Yet, a protection strip of not less than 4.8, 6.0, and 7.2 km according to the lake operating condition is inevitable to ensure that pollutants do not intrude into the lake. These findings will assist the decision-makers in scheming environmental impact assessment criteria for sustainable development.
An arid climate accompanied by a freshwater shortage plagued Egypt. It has resorted to groundwater reserves to meet the increasing water demands. Fossil aquifers were lately adopted as the sole water source to provide the irrigation water requirements of the ongoing reclamation activities in barren areas. Yet, the scarcity of measurements regarding the changes in the aquifers’ storage poses a great challenge to such sustainable resource management. In this context, the Gravity Recovery and Climate Experiment (GRACE) mission enables a novel consistent approach to deriving aquifers’ storage changes. In this study, the GRACE monthly solutions during the period 2003–2021 were utilized to estimate alterations in terrestrial water storage (TWS) throughout Egypt. Changes in groundwater storage (GWS) were inferred by subtracting soil water content, derived from the GLDAS-NOAH hydrological model, from the retrieved TWS. The secular trends in TWS and GWS were obtained using the linear least square method, while the non-parametric technique (Mann–Kendall’s tau) was applied to check the trend significance. The derived changes in GWS showed that all aquifers are undergoing a significant loss rate in their storage. The average depletion rate over the Sinai Peninsula was estimated at 0.64 ± 0.03 cm/year, while the depletion rate over the Nile delta aquifer was 0.32 ± 0.03 cm/year. During the investigated period (2003–2021), the extracted groundwater quantity from the Nubian aquifer in the Western Desert is estimated at nearly 7.25 km3. The storage loss from the Moghra aquifer has significantly increased from 32 Mm3/year (2003–2009) to 262 Mm3/year (2015–2021). This reflects the aquifer exposure for extensive water pumping to irrigate newly cultivated lands. The derived findings on the aquifers’ storage losses provide a vital source of information for the decision-makers to be employed for short- and long-term groundwater management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.