Recent research has shown the possibility of using smartphones' sensors and accessories to extract some behavioral attributes such as touch dynamics, keystroke dynamics and gait recognition. These attributes are known as behavioral biometrics and could be used to verify or identify users implicitly and continuously on smartphones. The authentication systems that have been built based on these behavioral biometric traits are known as active or continuous authentication systems.This paper provides a review of the active authentication systems. We present the components and the operating process of the active authentication systems in general, followed by an overview of the state-of-theart behavioral biometric traits that used to develop an active authentication systems and their evaluation on smartphones. We discuss the issues, strengths and limitations that associated with each behavioral biometric trait. Also, we introduce a comparative summary between them. Finally, challenges and open research problems are presented in this research field.
In recent years, the software industry has invested substantial effort to improve software quality in organizations. Applying proactive software defect prediction will help developers and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional software defect prediction models concentrate on traditional features of source code including code complexity, lines of code, etc. However, these features fail to extract the semantics of source code. In this research, we propose a hybrid model that is called CBIL. CBIL can predict the defective areas of source code. It extracts Abstract Syntax Tree (AST) tokens as vectors from source code. Mapping and word embedding turn integer vectors into dense vectors. Then, Convolutional Neural Network (CNN) extracts the semantics of AST tokens. After that, Bidirectional Long Short-Term Memory (Bi-LSTM) keeps key features and ignores other features in order to enhance the accuracy of software defect prediction. The proposed model CBIL is evaluated on a sample of seven open-source Java projects of the PROMISE dataset. CBIL is evaluated by applying the following evaluation metrics: F-measure and area under the curve (AUC). The results display that CBIL model improves the average of F-measure by 25% compared to CNN, as CNN accomplishes the top performance among the selected baseline models. In average of AUC, CBIL model improves AUC by 18% compared to Recurrent Neural Network (RNN), as RNN accomplishes the top performance among the selected baseline models used in the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.