Both nonparametric and parametric approaches for DCE-MRI analysis possess the ability to quantify tissue perfusion.
This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can increase the patient's chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems.
BackgroundPrevious reports indicate the presence of histological abnormalities in the brains of individuals with autism spectrum disorders (ASD) suggestive of a dysplastic process. In this study we identified areas of abnormal cortical thinning within the cerebral cortex of ASD individuals and examined the same for neuronal morphometric abnormalities by using computerized image analysis.ResultsThe study analyzed celloidin-embedded and Nissl-stained serial full coronal brain sections of 7 autistic (ADI-R diagnosed) and 7 age/sex-matched neurotypicals. Sections were scanned and manually segmented before implementing an algorithm using Laplace’s equation to measure cortical width. Identified areas were then subjected to analysis for neuronal morphometry. Results of our study indicate the presence within our ASD population of circumscribed foci of diminished cortical width that varied among affected individuals both in terms of location and overall size with the frontal lobes being particularly involved. Spatial statistic indicated a reduction in size of neurons within affected areas. Granulometry confirmed the presence of smaller pyramidal cells and suggested a concomitant reduction in the total number of interneurons.ConclusionsThe neuropathology is consistent with a diagnosis of focal cortical dysplasia (FCD). Results from the medical literature (e.g., heterotopias) and our own study suggest that the genesis of this cortical malformation seemingly resides in the heterochronic divisions of periventricular germinal cells. The end result is that during corticogenesis radially migrating neuroblasts (future pyramidal cells) are desynchronized in their development from those that follow a tangential route (interneurons). The possible presence of a pathological mechanism in common among different conditions expressing an autism-like phenotype argue in favor of considering ASD a “sequence” rather than a syndrome. Focal cortical dysplasias in ASD may serve to explain the high prevalence of seizures and sensory abnormalities in this patient population.
Accurate automatic extraction of a 3-D cerebrovascular system from images obtained by time-of-flight (TOF) or phase contrast (PC) magnetic resonance angiography (MRA) is a challenging segmentation problem due to the small size objects of interest (blood vessels) in each 2-D MRA slice and complex surrounding anatomical structures (e.g., fat, bones, or gray and white brain matter). We show that due to the multimodal nature of MRA data, blood vessels can be accurately separated from the background in each slice using a voxel-wise classification based on precisely identified probability models of voxel intensities. To identify the models, an empirical marginal probability distribution of intensities is closely approximated with a linear combination of discrete Gaussians (LCDG) with alternate signs, using our previous EM-based techniques for precise linear combination of Gaussian-approximation adapted to deal with the LCDGs. The high accuracy of the proposed approach is experimentally validated on 85 real MRA datasets (50 TOF and 35 PC) as well as on synthetic MRA data for special 3-D geometrical phantoms of known shapes.
To accurately segment pathological and healthy lungs for reliable computer-aided disease diagnostics, a stack of chest CT scans is modeled as a sample of a spatially inhomogeneous joint 3D Markov-Gibbs random field (MGRF) of voxel-wise lung and chest CT image signals (intensities). The proposed learnable MGRF integrates two visual appearance sub-models with an adaptive lung shape submodel. The first-order appearance submodel accounts for both the original CT image and its Gaussian scale space (GSS) filtered version to specify local and global signal properties, respectively. Each empirical marginal probability distribution of signals is closely approximated with a linear combination of discrete Gaussians (LCDG), containing two positive dominant and multiple sign-alternate subordinate DGs. The approximation is separated into two LCDGs to describe individually the lungs and their background, i.e., all other chest tissues. The second-order appearance submodel quantifies conditional pairwise intensity dependencies in the nearest voxel 26-neighborhood in both the original and GSS-filtered images. The shape submodel is built for a set of training data and is adapted during segmentation using both the lung and chest appearances. The accuracy of the proposed segmentation framework is quantitatively assessed using two public databases (ISBI VESSEL12 challenge and MICCAI LOLA11 challenge) and our own database with, respectively, 20, 55, and 30 CT images of various lung pathologies acquired with different scanners and protocols. Quantitative assessment of our framework in terms of Dice similarity coefficients, 95-percentile bidirectional Hausdorff distances, and percentage volume differences confirms the high accuracy of our model on both our database (98.4%, 2.2 mm, 0.42%) and the VESSEL12 database (99.0%, 2.1 mm, 0.39%), respectively. Similarly, the accuracy of our approach is further verified via a blind evaluation by the organizers of the LOLA11 competition, where an average overlap of 98.0% with the expert's segmentation is yielded on all 55 subjects with our framework being ranked first among all the state-of-the-art techniques compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.