NO formation, which is one of the main disadvantages of ammonia combustion, was studied during the isochoric, adiabatic autoignition of ammonia/air mixtures using the algorithm of Computational Singular Perturbation (CSP). The chemical reactions supporting the action of the mode relating the most to NO were shown to be essentially the ones of the extended Zeldovich mechanism, thus indicating that NO formation is mainly thermal and not due to fuel-bound nitrogen. Because of this, addition of water vapor reduced NO formation, because of its action as a thermal buffer, but increased ignition delay, thus exacerbating the second important caveat of ammonia combustion, which is unrealistically long ignition delay. However, it was also shown that further addition of just 2% molar of H2O2 does not only reduce the ignition delay by a factor of 30, but also reverses the way water vapor affects ignition delay. Specifically, in the ternary mixture NH3/H2O/H2O2, addition of water vapor does not prolong but rather shortens ignition delay because it increases OH radicals. At the same time, the presence of H2O2 does not affect the influence of H2O in suppressing NO generation. In this manner, we were able to show that NH3/H2O/H2O2 mixtures offer a way to use ammonia as carbon-less fuel with acceptable NOx emissions and realistic ignition delay.
The dynamics of a homogeneous adiabatic autoignition of an ammonia/air mixture at constant volume was studied, using the algorithmic tools of Computational Singular Perturbation. Since ammonia combustion is characterized by both unrealistically long ignition delays and elevated NO x emissions, the time frame of action of the modes that are responsible for ignition was analyzed by calculating the developing time scales throughout the process and by studying their possible relation to NO x emissions. The reactions that support or oppose the explosive time scale were identified, along with the variables that are related the most to the dynamics that drive the system to an explosion. It is shown that reaction H 2 O 2 (+M) → OH + OH (+M) is the one contributing the most to the time scale that characterizes ignition and that its reactant H 2 O 2 is the species related the most to this time scale. These findings suggested that addition of H 2 O 2 in the initial mixture will influence strongly the evolution of the process. It was shown that ignition of pure ammonia advanced as a slow thermal explosion with very limited chemical runaway. The ignition delay could be reduced by more than two orders of magnitude through H 2 O 2 addition, which causes only a minor increase in NO x emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.