In this study, we present a detailed TD-DFT study based on the B3LYP / 6-311G (d, p) and electronic properties of geometric structures of 4 -((2R, 3S) -2, 3, 4-trihydroxybutoxy) phthalonitrile. The study was expanded to HOMO-LUMO analysis to calculate energy gap (Δ), Ionization potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ), Global Electrophilicity (ω), Electronegicity (ε). Calculated HOMO and LUMO energy reveal charge transfers that occur within the molecule. The results were shown with graphs, tables, and figures. Nonlinear properties of the compound have been determined. Molecular docking was achieved to probe the complete binding site and binding mechanism of the ligand-protein interactions.
In this study, the macromolecular design was performed via interchange of xanthates (MADIX) polymerization. The macro RAFT/MADIX agent containing the structure of polytetrahydrofuran (PTHF) (average Mn ~ 1000 g/mol) was synthesized to use in the polymerization. PS-b-PTHF-b-PS triblock copolymer was obtained by styrene-controlled radical polymerization using the RAFT/MADIX agent. The plot of ln [M] o /[M] versus monomer concentration versus polymerization time exhibits first-order kinetic behavior. Block copolymer formation has a controlled character. The formation of the narrow molecular weight polymer controlled by the styrene's RAFT/MADIX polymerization is confirmed by the increase in the polymerization time of the molecular weight. The results are in good agreement with theoretical values. Block copolymers having a narrow molecular weight distribution and a predetermined average molecular weight have been obtained using this polymerization process. The synthesized RAFT/MADIX agents, polymer, and copolymers were characterized by NMR and FT-IR spectroscopy, GPC, and differential scanning calorimetry. Based on the vibration analysis, the thermodynamic properties of the compound were also calculated. Optimized structure, frontier molecular orbitals (HOMO and LUMO) and global reactivity descriptors were analyzed by DFT calculations. As a result of the DFT study with trimer and hexamer; although the chain length is increased, the energy parameters obtained are very proximate to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.