The nonopioid actions of spinal dynorphin may promote aspects of abnormal pain after nerve injury. Mechanistic similarities have been suggested between opioid tolerance and neuropathic pain. Here, the hypothesis that spinal dynorphin might mediate effects of sustained spinal opioids was explored. Possible abnormal pain and spinal antinociceptive tolerance were evaluated after intrathecal administration of [D-Ala 2 , N-Me-Phe 4 , Gly-ol 5 ]enke phalin (DAMGO), an opioid agonist. Rats infused with DAMGO, but not saline, demonstrated tactile allodynia and thermal hyperalgesia of the hindpaws (during the DAMGO infusion) and a decrease in antinociceptive potency and efficacy of spinal opioids (tolerance), signs also characteristic of nerve injury. Spinal DAMGO elicited an increase in lumbar dynorphin content and a decrease in the receptor immunoreactivity in the spinal dorsal horn, signs also seen in the postnerve-injury state. Intrathecal administration of dynorphin A(1-17) antiserum blocked tactile allodynia and reversed thermal hyperalgesia to above baseline levels (i.e., antinociception). Spinal dynorphin antiserum, but not control serum, also reestablished the antinociceptive potency and efficacy of spinal morphine. Neither dynorphin antiserum nor control serum administration altered baseline non-noxious or noxious thresholds or affected the intrathecal morphine antinociceptive response in saline-infused rats. These data suggest that spinal dynorphin promotes abnormal pain and acts to reduce the antinociceptive efficacy of spinal opioids (i.e., tolerance). The data also identify a possible mechanism for previously unexplained clinical observations and offer a novel approach for the development of strategies that could improve the long-term use of opioids for pain.
Experimental nerve injury results in exaggerated responses to tactile and thermal stimuli that resemble some aspects of human neuropathic pain. Neuronal hyperexcitability and neurotransmitter release have been suggested to promote such increased responses to sensory stimuli. Enhanced activity of Ca(2+) current is associated with increased neuronal activity and blockade of N- and P-types, but not L-type, calcium channels have been found to block experimental neuropathic pain. While T-type currents are believed to promote neuronal excitability and transmitter release, it is unclear whether these channels may also contribute to the neuropathic state. Rats were prepared with L(5)/L(6) spinal nerve ligation, and tactile and thermal hypersensitivities were established. Mibefradil or ethosuximide was administered either intraperitoneally, intrathecally (i.th.), or locally into the plantar aspect of the injured hindpaw. Systemic mibefradil or ethosuximide produced a dose-dependent blockade of both tactile and thermal hypersensitivities in nerve-injured rats; responses of sham-operated rats were unchanged. Local injection of mibefradil also blocked both end points. Ethosuximide, however, was inactive after local administration, perhaps reflecting its low potency when compared with mibefradil. Neither mibefradil nor ethosuximide given i.th. produced any blockade of neuropathic behaviors. The results presented here suggest that T-type calcium channels may play a role in the expression of the neuropathic state. The data support the view that selective T-type calcium channel blockers may have significant potential in the treatment of neuropathic pain states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.