In this study, International Affective Picture System (IAPS) were used to evoke fear and neutral stimuli using EMOTIV EPOC EEG recognition system (n=15). During the experiments, EEG data were recorded using the Test bench program. To synchronize the EEG records, IAPS pictures were reflected on the screen. A Python script was written in the Open Sesame program to provide a synchronized data flow in the Input/Output channels of the installed virtual serial port. The Event-Related Oscillations (ERO) responses and Event-Related Potentials (ERPs) were calculated. Statistically significant differences (p
Among the most significant characteristics of human beings is their ability to feel emotions. In recent years, human-machine interface (HM) research has centered on ways to empower the classification of emotions. Mainly, human-computer interaction (HCI) research concentrates on methods that enable computers to reveal the emotional states of humans. In this research, an emotion detection system based on visual IAPPS pictures through EMOTIV EPOC EEG signals was proposed. We employed EEG signals acquired from channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) for individuals in a visual induced setting (IAPS fear and neutral aroused pictures). The wavelet packet transform (WPT) combined with the wavelet entropy algorithm was applied to the EEG signals. The entropy values were extracted for every two classes. Finally, these feature matrices were fed into the SVM (Support Vector Machine) type classifier to generate the classification model. Also, we evaluated the proposed algorithm as area under the ROC (Receiver Operating Characteristic) curve, or simply AUC (Area under the curve) was utilized as an alternative single-number measure. Overall classification accuracy was obtained at 91.0%. For classification, the AUC value given for SVM was 0.97. The calculations confirmed that the proposed approaches are successful for the detection of the emotion of fear stimuli via EMOTIV EPOC EEG signals and that the accuracy of the classification is acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.