This study aims to determine the long-run impact of physical and human capital on GDP by using the panel data set of 13 developed and 11 developing countries over the period 1970-2010. Gross fixed capital formation is used as physical capital indicator while education expenditures and life expectancy at birth are used as human capital indicators. Panel DOLS and FMOLS panel cointegrated regression models are exploited to detect the magnitude and sign of the cointegration relationship and compare the effect of these physical and human capital variables according to these two different country groups. As a consequence of panels DOLS and FMOLS models, the impact of physical capital and education expenditures on GDP in the developed countries is determined as higher than the impact in the developing countries. On the other hand, the impact of life expectancy at birth on GDP is determined as higher in the developing countries.
Health is assumed to influence the economy through many channels. It reduces infant mortality and increase life expectancy and adult survival rates. Health level and life expectancy affects long-term savings decisions of individuals. This study examines the relationship between health indicators and economic growth in 19 OECD countries during the period 1970-2009 within a panel data analysis. The authors employ three different measures of health. Results show that an increase in health expenditures and a decrease in infant mortality positively affect GDP in compatible with the theoretical assumptions. However, life expectancy is detected to affect GDP negatively in contrast with the theoretical expectations. In conclusion, health expenditures and services concluded to influence GDP by improving human capital. Furthermore, the authors make suggestions about how economies can remove the burden of aging population.
Purpose
This study aims to examine the impact of some real variables such as real effective exchange rates, real mortgage rates, real money supply, real construction cost index and housing sales on the real housing prices.
Design/methodology/approach
This study uses a nonlinear autoregressive distributed lag (NARDL) model in the monthly period of 2010:1–2021:10.
Findings
The real effective exchange rate has a positive and symmetric effect. The decreasing effect of negative changes in real money supply on real housing prices is higher than the increasing effect of positive changes. Only positive changes in the real construction cost index have an increasing and statistically significant effect on real house prices, while only negative changes in housing sales have a small negative sign and a small increasing effect on housing prices. The fact that the positive and negative changes in real mortgage rates are negative and positive, respectively, indicates that both have a reducing effect on real housing prices.
Originality/value
This study suggests the first NARDL model that investigates the asymmetric effects on real housing prices instead of nominal housing prices for Turkey. In addition, the study is the first, to the best of the authors’ knowledge, to examine the effects of the five real variables on real housing prices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.