This study investigated the effects of FDM (Fused Deposition Modeling) process parameters on mechanical properties (tensile strength, elongation, and impact strength) of 3D (three-dimensional) printed PA12 (Polyamide12) samples using Taguchi method. In the experimental design (L8), four different layer thickness (0.1, 0.15, 0.2, 0.25 mm), extruder temperature (250 and 260°C), filling structure (Rectilinear and Full Honeycomb), and occupancy rate (25 and 50%) were determined. The tensile and impact strength test samples were printed with the FDM method. Tensile and impact strength of the test samples were carried out according to ISO 527 and ISO 180 test standards. The findings obtained from tests were analyzed and compared. As a result, the layer thickness is most effective factor for enhance the mechanical properties instead extruder temperature, occupancy rate, and filling structure. The optimum tensile strength of determined for process parameters (layer thickness, occupancy rates, filling structures and extruder temperature) were 0.25 mm, 50%, Rectilinear, and 250°C, respectively. The optimum impact strength of determined for process parameters (layer thickness, occupancy rates, extruder temperature, and filling structures) were 0.25 mm, 50%, 250°C, and Rectilinear, respectively. PA12 filament material can be used to printing for sleeve bearing due to their mechanical properties. It can be used in the production of many machine parts and components due to its tensile strength, impact strength resistance and damping properties.
Additive Manufacturing (AM), widely known as three-dimensional (3D) printing, is the process that a product is fabricated layer by layer in Cartesian coordinate system. Fused Deposition Modelling (FDM) is the most used AM process for functional rapid prototyping and products reduces the time and material involved in manufacturing. The purpose of this study is to investigate the effects of 3D printer system vibrations on the surface roughness of fabricated products. Polyethyletherphthalate Glycol (PET-G) is used as material for fabrication. Six different filling structures -Rectilinear, Grid, Triangular, Wiggle, Fast Honeycomb, and Full Honeycomb -were used and for each structure two different top -two and three -layers implemented. A total of 12 samples specimens were fabricated. The results showed that using Full Honeycomb filling structure with three top layers is more suitable for surface roughness compare to the others filling structure used. It can be concluded that the vibration of 3D printer system considering type of filling structure and number of top layers have a significant effect on surface quality of product. ÖZETYaygın olarak üç boyutlu (3D) baskı olarak bilinen Eklemeli Üretim (Additive Manufacturing -AM), bir ürünün Kartezyen koordinat sisteminde katmanla üretildiği süreçtir. Erişim Birikim Modelleme (Fused Deposition Modeling -FDM), fonksiyonel hızlı prototipleme ve ürün için en çok kullanılan AM sürecidir, üretimle ilgili zamanı ve malzemeyi azaltır. Bu çalışmanın amacı, 3D yazıcı sistem titreşimlerinin, imal edilen ürünlerin yüzey pürüzlülüğü üzerindeki etkilerini araştırmaktır. Üretim için malzeme olarak Polietileterftalat Glikol (PET-G) kullanılmıştır. Altı farklı dolgu şekli -Rectilinear, Grid, Triangular, Wiggle, Fast Honeycomb ve Full Honeycomb -kullanılmış ve her yapı için iki farklı üst katmaniki ve üç katmanuygulanarak toplam 12 test numunesi basılmıştır. Basılan ürünlerin yüzey pürüzlülüğü ölçümleri yapılarak elde edilen veriler üzerinden karşılaştırma yapılmış ve sonuçlar analiz edilmiştir. Sonuçlar, üç üst katmanlı ızgara (Grid) doldurma yapısının kullanılması, yüzey pürüzlülüğü için diğer doldurma yapılarına kıyasla daha uygun olduğunu göstermiştir. Dolgu Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7 (2019) 147-157 şekli türüne ve üst katmanların sayısına bağlı olarak 3D yazıcı sisteminin titreşiminin ürünün yüzey kalitesi üzerinde önemli bir etkisi olduğu görülmüştür.
3D printing technology has gradually taken its place in many sectors. However, expected performance cannot be obtained from the structural parts with this method due to the raw material properties and constraints of Cartesian motion systems. This technology cannot replace structural parts produced by traditional manufacturing methods. In order to avoid these constraints, it is preferred to use continuous fiber reinforced polymer composites in many areas such as automotive and aerospace industries due to their low weight and high specific strength properties. These automated composite manufacturing methods currently have limited production of geometric shapes due to the need for additional molds and production as flat surfaces. To overcome all these constraints, fiberglass reinforced ultraviolet ray-curing polymer matrix composite material are selected for robotic 3 D printing process and various parameters are examined. Fiber-polymer combination and layer structure formation was examined. Scanning Electron Microscopy (SEM) images of sections of 3 D printed test samples were taken and fiber resin curing was examined. The nozzle diameter, printing speed, fiber density and Ultra Violet (UV) light intensity parameters, which will provide effective 3 D printing process, are optimized with the Taguchi method. Tensile strength, flexural strength and izod impact values are considered as result parameters for optimization. It was found that it would be appropriate for 3D printing with a 1.0 mm nozzle diameter, 600 tex fiber density, 4 UV light, 600 mm/min printing speed. With these 3D printing process parameters, approximately 125 MPa tensile strength and 450 MPa flexural strength can be obtained. With this study, support and contribution was provided to researchers, composite producers, tool manufacturer and literature who want to use and develop this 3D printing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.