A number of quality measures are evaluated for gray scale image compression. They are all bivariate, exploiting the differences between corresponding pixels in the original and degraded images.It is shown that although some numerical measures correlate well with the observers' response for a given compression technique, they are not reliable for an evaluation across different techniques.The two graphical measures (histograms and Hosaka plots), however, can be used to appropriately specify not only the amount, but also the type of degradation in reconstructed _mages.
The important criteria used in subjective evaluation of distorted images include the amount of distortion, the type of distortion, and the distribution of error. An ideal image quality measure should, therefore, be able to mimic the human observer. We present a new grayscale image quality measure that can be used as a graphical or a scalar measure to predict the distortion introduced by a wide range of noise sources. Based on singular value decomposition, it reliably measures the distortion not only within a distortion type at different distortion levels, but also across different distortion types. The measure was applied to five test images (airplane, boat, goldhill, Lena, and peppers) using six types of distortion (JPEG, JPEG 2000, Gaussian blur, Gaussian noise, sharpening, and DC-shifting), each with five distortion levels. Its performance is compared with PSNR and two recent measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.