Concentrated solar power (CSP) systems use heliostats to concentrate solar radiation in order to produce heat, which drives a turbine to generate electricity. We, the Combustion and Solar Energy Laboratory at San Diego State University, are developing a new type of receiver for power tower CSP plants based on volumetric absorption by a gas-particle suspension. The radiation enters the pressurized receiver through a window, which must sustain the thermal loads from the concentrated solar flux and infrared reradiation from inside the receiver. The window is curved in a dome shape to withstand the pressure within the receiver and help minimize the stresses caused by thermal loading. It is highly important to estimate how much radiation goes through the window into the receiver and the spatial and directional distribution of the radiation. These factors play an important role in the efficiency of the receiver as well as window survivability. Concentrated solar flux was calculated with a computer code called MIRVAL from Sandia National Laboratory which uses the Monte Carlo Ray Trace (MCRT) method. The computer code is capable of taking the day of the year and time of day into account, which causes a variation in the flux. Knowing the concentrated solar flux, it is possible to calculate the solar radiation through the window and the thermal loading on the window from the short wavelength solar radiation. The MIRVAL code as originally written did not account for spectral variations, but we have added that capability. Optical properties of the window such as the transmissivity, absorptivity, and reflectivity need to be known in order to trace the rays at the window. A separate computer code was developed to calculate the optical properties depending on the incident angle and the wavelength of the incident radiation by using data for the absorptive index and index of refraction for the window (quartz) from other studies and vendor information. This method accounts for regions where the window is partially transparent and internal absorption can occur. A third code was developed using the MCRT method and coupled with both codes mentioned above to calculate the thermal load on the window and the solar radiation that enters the receiver. Thermal load was calculated from energy absorbed at various points throughout the window. In our study, window shapes from flat to concave hemispherical, as well as a novel concave ellipsoidal window are considered, including the effect of day of the year and time of the day.
A new type of high temperature solar receiver for Brayton Cycle power towers is being designed and built in the Combustion and Solar Energy Laboratory at San Diego State University under a DOE Sunshot Award. The Small Particle Solar Receiver is a pressurized vessel with a window to admit concentrated solar radiation that utilizes a gas-particle suspension for absorption and heat transfer. As the particles absorb the radiation that enters the receiver through the window, the carrier fluid (air in this case) heats which oxidizes the particles and the flow leaves the receiver as a clear gas stream. After passing through an in-line combustor if needed, this hot gas is used to power a turbine to generate electricity. The numerical modelling of the receiver is broken into three main pieces: Monte Carlo Ray Trace (MCRT) method (written in FORTRAN), ANSYS Fluent (CFD), and the User Defined function (written in C code) for oxidation. Each piece has its advantages, disadvantages, and limitations and the three pieces are coupled to finalize the calculation. While we have successfully demonstrated this approach to obtaining the velocity and temperature fields, one big challenge to this method is that the definition of the geometry is a time consuming programming task when using MCRT. On the other hand, arbitrary geometries can be easily modelled by Computational Fluid Dynamics (CFD) codes such as FLUENT. The goal of this study is to limit the use of MCRT method to determining the appropriate input boundary condition on the outside of the window of the receiver and to use the built-in Discrete Ordinates (DO) method for all the radiation internal to the receiver and leaving the receiver due to emission. To reach the goal, this paper focuses on the DO method implemented within FLUENT. An earlier study on this subject is based and advanced. Appropriate radiation input for the DO method is extensively discussed. MIRVAL is used to simulate the heliostat field and VEGAS is used to simulate a lab-scale solar simulator; both of these codes utilize the MCRT method and provide intensity information on a surface. Output from these codes is discretized into DO parameters allowing the solution to proceed in FLUENT. Suitable benchmarks in FLUENT are used in a cylindrical geometry representing the receiver for the comparison and validation. This method will allow FLUENT to be used for a variety of problems involving concentrated solar energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.