MicroRNAs (miRNA) are a type of non-coding RNA molecules that are effective on the formation and the progression of many different diseases. Various researches have reported that miRNAs play a major role in the prevention, diagnosis, and treatment of complex human diseases. In recent years, researchers have made a tremendous effort to find the potential relationships between miRNAs and diseases. Since the experimental techniques used to find that new miRNA-disease relationships are time-consuming and expensive, many computational techniques have been developed. In this study, Weighted [Formula: see text]-Nearest Known Neighbors and Network Consistency Projection techniques were suggested to predict new miRNA-disease relationships using various types of knowledge such as known miRNA-disease relationships, functional similarity of miRNA, and disease semantic similarity. An average AUC of 0.9037 and 0.9168 were calculated in our method by 5-fold and leave-one-out cross validation, respectively. Case studies of breast, lung, and colon neoplasms were applied to prove the performance of our proposed technique, and the results confirmed the predictive reliability of this method. Therefore, reported experimental results have shown that our proposed method can be used as a reliable computational model to reveal potential relationships between miRNAs and diseases.
Abstract:The definition of the data mining can be told as to extract information or knowledge from large volumes of data. Statistical and machine learning techniques are used for the determination of the models to be used for data mining predictions. Today, data mining is used in many different areas such as science and engineering, health, commerce, shopping, banking and finance, education and internet. This study make use of WEKA (Waikato Environment for Knowledge Analysis) to compare the different classification techniques on energy efficiency datasets. In this study 10 different Data Mining methods namely Bagging, Decorate, Rotation Forest, J48, NNge, K-Star, Naïve Bayes, Dagging, Bayes Net and JRip classification methods were applied on energy efficiency dataset that were taken from UCI Machine Learning Repository. When comparing the performances of algorithms it's been found that Rotation Forest has highest accuracy whereas Dagging had the worst accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.