In this article, a simple, accurate, fast, and reliable black-box modeling is proposed for the scattering (S)-parameters and noise (N)-parameters of microwave transistors using the general regression neural network (GRNN) with the substantially reduced measurements and computational cost. In this modeling method, GRNN is employed as a nonlinear extrapolator to generalize the S-data and N-data belonging to only a single bias voltage in the middle region into the entire device operation domain of the bias condition (V DS /V CE , I DS /I C , f) within the shortened human effort. The proposed method is implemented to the modeling of the two transistors BFP640 and ATF-551 M4 as study cases. Thus, comparisons are made with the multilayer perceptrons, trained by the two standard backward propagation algorithms, which are the Levenberg-Marquardt, Bayesian regularization and the 10 data mining methods recently published in the literature using the chosen training data sets in both ınterpolation and extrapolation types of generalization. All the comparisons are achieved using four criteria commonly used in the literature. It can be concluded that GRNN is found to be a fast and accurate modeling method that extrapolates the reduced amount of training data consisting of measured S-parameters and N-parameters at the typical currents of the middle bias voltage to the wide operating range.
Herein, noise, gain and port mismatchings of a microwave small-signal transistor are expressed as all the set of acceptable Pareto optimal solutions and trade-off relations within the device operation (V DS , I DS , f) domain without any need of expert knowledge of microwave device. In this multi-objective optimization problem, non-dominated sorting genetic algorithm (NSGA)-III is applied to an ultra-low noise amplifier (LNA) transistor NE3511S02 (HJ-FET) where the noise F req ≥ F min and output mismatching V outreq ≥ 1 are preferred as the reference points, while the input mismatching V inopt ≥ 1 and gain G Tmax are optimized with respect to source Z S and load Z L within the unconditionally stable working area. Thus, diverse set of the Pareto optimal (the required noise F req , the optimum input V inopt , the required output V outreq , the maximum transducer gain G Tmax) quadruples are resulted from a fast search of the solution space. Furthermore, the optimum bias condition (V DS , I DS) and sensitivities of the terminations to fabrication tolerances are also determined using the cost analysis in the operation domain for the required P max , I DSmax and performance quadruple. Finally, this work is expected to enable a designer to provide the feasible design target space (FDTS) consisting of all trade-off relations among all the transistor's performance ingredients to be used in the challenging LNA designs. INDEX TERMS Non-dominated sorting genetic algorithm, Pareto optimal solutions, optimization, impedance mismatching, transducer gain, noise figure.
Birçok iletişim sistemi, radyo frekans (RF) filtreleriyle sinyal işleyen bir radyo frekans ön ucuna ihtiyaç duyar. Mikroşerit filtreler bunu gerçekleştirebilmenin oldukça düşük maliyetli ve kolay bir yöntemidir. Filtreler, mikrodalga teknolojisini kullanan uygulamalarda önemli bir yere sahiptir. Aynı zamanda mikroşerit filtreler, GSM (900MHz,1800MHz), WLAN (2,45GHz), WİMAX (3,5GHz) vb. kablosuz ve mobil haberleşme sistemlerindeki gelişmelerle beraber yoğun olarak kullanılmaktadır. Kullanılabilir boyut, yüksek performans ve düşük maliyet gibi ortaya atılan kriterleri karşılamak için milimetre ve mikrodalga sistemlere artan büyük bir ilgi vardır. Bu makalede, dizi (filtre kat sayısı) n = 8-12 arası değişen değerler için 1,6 mm dielektrik yüksekliğine sahip, geçirgenlik 4,4 değeri için WLAN (2,45GHz) ve WİMAX (3,5GHz) frekansında çalışan mikroşerit düzeni kullanılarak düşük maliyetli ve düşük ekleme kayıplı S-bant alçak geçiren filtrenin (AGF) tasarımını evrimsel algoritmalar ile kolaylaştırılmasını göstermektedir. Bu çalışmada standart yapılanlara ek olarak değişken filtre kat sayısı ve simetri durumu problemin zorluk derecesini bir basamak daha ileri götürmektedir. Tasarım simülasyonu, MATLAB programı kullanılarak gerçekleştirilmektedir. Tasarım sonucunda algoritmaların başarı grafiklerinin yanı sıra her algoritma için tasarlanan filtrenin S11 ve S21 (dB) parametreleri MATLAB programı ile çizdirilmiştir. En başarılı sonuç olan diferansiyel evrim algoritması ile yapılan optimizasyon ile elde edildiği görülmüş ve farklı bir frekans bandı için ayrıca bir yapılmıştır.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.