In a cold plate low thermal resistance thus high heat transfer rate and also low pressure drop is desired. In this study, performances of three liquid cold plates with different configurations are investigated for the thermal regulation of li-ion battery cells in electric vehicle applications. The outer dimensions of the cold plates are kept identical in order to use the cold plates in the same battery module under series, parallel and series-parallel configurations. The performances of the cold plates are investigated by using Computational Fluid Dynamic (CFD) tools. ANSYS Fluent commercial software is used to calculate the flowfield and the thermal field inside the cold plates for various flowrates. The performances of the cold plates are obtained by 3D simulations that solve Navier-Stokes, energy and continuity equations in a steady manner. The flow is assumed to be laminar for all the cases since calculated Reynolds number stay in laminar flow limits. The results show that the pressure drop of the coolant liquid of parallel flow arrangement is significantly lower than the serial arrangement. However, high thermal resistance and low uniformity of the temperature through the cold plate is observed compared to the serial case, as expected. As a result, series-parallel configuration results show that the trade-off between pressure drop and heat transfer rate can be optimized by applying a serpentine shape while keeping the flow arrangement as parallel as possible and increasing the length of the cross channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.