Addition of high-energy-density materials such as aluminum (Al) microparticles or nanoparticles to liquid propellants potentially improves performance of the fuel. We report on the effects of untreated, prestressed, and superquenched aluminum particles with diameters of 100 nm, 250 nm, 500 nm, 1.6 μm, and 8.8 μm on the combustion of JP-10 droplets acoustically levitated in an oxygen–argon atmosphere. Ignition was initiated by a carbon dioxide laser, and the resulting oxidation processes were traced by Raman, Fourier-transform infrared (FTIR), and ultraviolet–visible (UV–vis) spectroscopies together with high-speed optical and IR thermal-imaging cameras. The UV–vis emission spectra reveal that the key reactive radical intermediates hydroxyl (OH), methylidyne (CH), dicarbon (C2), aluminum monoxide (AlO), and aluminum monohydride (AlH) were formed in addition to atomic aluminum (Al) and the final oxidation products of JP-10, namely, water (H2O) and carbon dioxide (CO2). The Al particles facilitated ignition of the JP-10 droplets and produced higher temperatures in the combustion process of up to typically 2600 K. The effect of the Al particles on the ignition and maximum flame temperatures increased as the diameters reduced. The different stress treatments did not produce observable changes for the ignition or combustion of the droplets, which indicates that the liquid propellant was not significantly affected by manipulating the mechanical properties of the fuel particle additive. The initiation and enhancement of the combustion were a consequence of forming highly reactive atomic oxygen (O) and aluminum monoxide (AlO) radicals in the reaction of aluminum atoms with molecular oxygen in the gas phase. These radicals initiate the degradation of JP-10 via atomic hydrogen abstraction forming the hydroxyl (OH) and aluminum hydroxide (AlOH) radicals in reactions which are mainly exothermic by up to 68 kJ mol–1. In contrast, hydrogen abstractions from JP-10 by molecular oxygen or atomic aluminum are strongly endothermic by up to 236 kJ mol–1, thus making these reactions less competitive. The generation of C10H15 hydrocarbon radicals from the JP-10 initiates successive oxidations and chain reactions with molecular oxygen leading eventually to carbon dioxide and water. These combined experimental results provide insight into how aluminum particles facilitate the oxidation and reaction mechanisms of JP-10 droplets.
Advancement of the next generation of air-breathing propulsion systems will require developing novel high-energy fuels by adding high energy-density materials such as aluminum to enhance fuel performance. We present original measurements, obtained by exploiting the ultrasonic levitation technique, to elucidate the oxidation of exo-tetrahydrodicyclopentadiene (JP-10; C10H16) droplets doped with 80 nm-diameter aluminum nanoparticles (Al NPs) in an oxygen–argon atmosphere. The oxidation was monitored by Raman, Fourier-transform infrared (FTIR), and ultraviolet–visible (UV–Vis) spectroscopies together with high-speed optical and IR thermal-imaging cameras. The addition of 0.5 wt % of the Al NPs was critical for ignition under our experimental conditions occurring at 540 ± 40 K. Diatomic radicals such as OH, CH, C2, and AlO were observed during the oxidation of the doped JP-10 droplets, thus providing insight into the reactive intermediates. The influence of the Al NPs on the reaction mechanism is discussed.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.
Cation modulation engineering is employed to tune the intrinsic activity and electronic structure of electrocatalysts for water electrolysis. Here, we designed two-dimensional cobalt–iron-layered double-hydroxide (CoFe-LDH) ultrathin nanosheets by pulsed laser ablation in an aqueous medium. The CoFe-LDH nanosheets exhibited abundant electrochemically active sites and a large surface area. The optimal Co0.5Fe0.5-LDH exhibited a low overpotential of 270 mV during half-cell oxygen evolution reactions (OERs), whereas Co0.25Fe0.75-LDH delivered 365 mV at 10 mA/cm2 during hydrogen evolution reactions (HERs). The bifunctional electrocatalyst exhibited an outstanding water electrolyzer performance at a cell voltage of ∼1.89 V at 10 mA/cm2 and admirable stability for long-run repetitive cycles. The synergistic effect between the modulated cations resulted in better conductivity, and the mass transfer facilitated the HER and OER. We demonstrated that this facile approach can facilitate the engineering of a highly stable and efficient electrode for renewable electrochemical energy conversion reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.