We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular DNA that was then used as the template for RCA. F-PNAs complementary to the target miRNA were annealed to multiple sites of the isothermally amplified single-stranded RCA product (RCAP) containing multiple target miRNA sequences. This F-PNA/RCAP duplex is less adsorbed onto the GO monolayer, thus attenuating the quenching of F-PNA fluorescence by GO. In the absence of target miRNA (and hence the absence of RCA and duplex formation), the free F-PNA is completely adsorbed onto the GO monolayer and fluorescence quenching ensues. Thus, GO-based fluorescence detection coupled with isothermal gene amplification would be a simple and convenient method for the quantitative detection of miRNA.
Contribution of autophagy and regulation of related proteins to the degeneration of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD) remain unknown. We report that upregulation of KRT8 (keratin 8) as well as its phosphorylation are accompanied with autophagy and attenuated with the inhibition of autophagy in RPE cells under oxidative stress. KRT8 appears to have a dual role in RPE pathophysiology. While increased expression of KRT8 following autophagy provides a cytoprotective role in RPE, phosphorylation of KRT8 induces pathologic epithelial-mesenchymal transition (EMT) of RPE cells under oxidative stress, which is mediated by MAPK1/ERK2 (mitogen-activated protein kinase 1) and MAPK3/ERK1. Inhibition of autophagy further promotes EMT, which can be reversed by inhibition of MAPK. Thus, regulated enhancement of autophagy with concurrent increased expression of KRT8 and the inhibition of KRT8 phosphorylation serve to inhibit oxidative stress-induced EMT of RPE cells as well as to prevent cell death, suggesting that pharmacological manipulation of KRT8 upregulation through autophagy with combined inhibition of the MAPK1/3 pathway may be attractive therapeutic strategies for the treatment of AMD.
The immunoproteasome (iP) is a variant of the constitutive proteasome (cP) that is abundantly expressed in immune cells which can also be induced in somatic cells by cytokines such as TNF-α or IFN-γ. Accumulating evidence support that the iP is closely linked to multiple facets of inflammatory response, eventually leading to the development of several iP inhibitors as potential therapeutic agents for autoimmune diseases. Recent studies also found that the iP is upregulated in reactive glial cells surrounding amyloid β (Aβ) deposits in brains of Alzheimer’s disease (AD) patients, but the role it plays in the pathogenesis of AD remains unclear. In this study, we investigated the effects of several proteasome inhibitors on cognitive function in AD mouse models and found that YU102, a dual inhibitor of the iP catalytic subunit LMP2 and the cP catalytic subunit Y, ameliorates cognitive impairments in AD mouse models without affecting Aβ deposition. The data obtained from our investigation revealed that YU102 suppresses the secretion of inflammatory cytokines from microglial cells. Overall, this study indicates that there may exist a potential link between LMP2/Y and microglia-mediated neuroinflammation and that inhibition of these subunits may offer a new therapeutic strategy for AD.
The immunoproteasome (iP), an inducible proteasome variant harboring three immunosubunits, low molecular mass polypeptide-2 (LMP2), multicatalytic endopeptidase complex subunit-1, and low molecular mass polypeptide-7 (LMP7), is involved in multiple facets of inflammatory responses. We recently reported that YU102, a dual inhibitor of the iP subunit LMP2 and the constitutive proteasome catalytic subunit β1, ameliorates cognitive impairments in mouse models of Alzheimer's disease (AD) independently of amyloid deposits. To investigate whether inhibition of LMP2 is sufficient to improve the cognitive functions of AD mice, here we prepared 37 YU102 analogues and identified a potent LMP2 inhibitor DB-310 (28) (IC 50 : 80.6 nM) with improved selectivity and permeability in cells overexpressing ABCB1 transporters. We show that DB-310 induces suppression of IL-1α production in microglia cells and improves cognitive functions in the Tg2576 transgenic mouse model of AD. This study supports that inhibition of LMP2 is a promising therapeutic strategy for treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.