Transparent flexible graphene triboelectric nanogenerators as new promising applications of chemical vapor deposition‐grown graphene are successfully demonstrated. The work function and friction are decisive factors to understand the difference in output performance depending on the number of layers of graphene. In this work, we were able to power an LCD, LEDs, and an EL display using the electrical power output of the graphene triboelectric nanogenerator without any external energy source.
We investigated the surface potential (V surf ) of exfoliated MoS 2 flakes on bare and Au-coated SiO 2 /Si substrates using Kelvin probe force microscopy. The V surf of MoS 2 single layers was larger on the Au-coated substrates than on the bare substrates; our theoretical calculations indicate that this may be caused by the formation of a larger electric dipole at the MoS 2 / Au interface leading to a modified band alignment. V surf decreased as the thickness of the flakes increased until reaching the bulk value at a thickness of ∼20 nm (∼30 layers) on the bare and ∼80 nm (∼120 layers) on the Au-coated substrates, respectively. This thickness dependence of V surf was attributed to electrostatic screening in the MoS 2 layers. Thus, a difference in the thickness at which the bulk V surf appeared suggests that the underlying substrate has an effect on the electric-field screening length of the MoS 2 flakes. This work provides important insights to help understand and control the electrical properties of metal/MoS 2 contacts.
Layer-by-layer multilayers are demonstrated for low-cost, durable, scalable, and wearable graphene-TENGs on flat or undulated polymer substrates and fabric textiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.