Accurate prediction of deoxyribonucleic acid (DNA) modifications is essential to explore and discern the process of cell differentiation, gene expression and epigenetic regulation. Several computational approaches have been proposed for particular type-specific DNA modification prediction. Two recent generalized computational predictors are capable of detecting three different types of DNA modifications; however, type-specific and generalized modifications predictors produce limited performance across multiple species mainly due to the use of ineffective sequence encoding methods. The paper in hand presents a generalized computational approach “DNA-MP” that is competent to more precisely predict three different DNA modifications across multiple species. Proposed DNA-MP approach makes use of a powerful encoding method “position specific nucleotides occurrence based 117 on modification and non-modification class densities normalized difference” (POCD-ND) to generate the statistical representations of DNA sequences and a deep forest classifier for modifications prediction. POCD-ND encoder generates statistical representations by extracting position specific distributional information of nucleotides in the DNA sequences. We perform a comprehensive intrinsic and extrinsic evaluation of the proposed encoder and compare its performance with 32 most widely used encoding methods on $17$ benchmark DNA modifications prediction datasets of $12$ different species using $10$ different machine learning classifiers. Overall, with all classifiers, the proposed POCD-ND encoder outperforms existing $32$ different encoders. Furthermore, combinedly over 5-fold cross validation benchmark datasets and independent test sets, proposed DNA-MP predictor outperforms state-of-the-art type-specific and generalized modifications predictors by an average accuracy of 7% across 4mc datasets, 1.35% across 5hmc datasets and 10% for 6ma datasets. To facilitate the scientific community, the DNA-MP web application is available at https://sds_genetic_analysis.opendfki.de/DNA_Modifications/.
Viral-host protein-protein interaction (VHPPI) prediction is essential to decoding molecular mechanisms of viral pathogens and host immunity processes that eventually help to control the propagation of viral diseases and to design optimized therapeutics. Multiple AI-based predictors have been developed to predict diverse VHPPIs across a wide range of viruses and hosts, however, these predictors produce better performance only for specific types of hosts and viruses. The prime objective of this research is to develop a robust meta predictor (MP-VHPPI) capable of more accurately predicting VHPPI across multiple hosts and viruses. The proposed meta predictor makes use of two well-known encoding methods Amphiphilic Pseudo-Amino Acid Composition (APAAC) and Quasi-sequence (QS) Order that capture amino acids sequence order and distributional information to most effectively generate the numerical representation of complete viral-host raw protein sequences. Feature agglomeration method is utilized to transform the original feature space into a more informative feature space. Random forest (RF) and Extra tree (ET) classifiers are trained on optimized feature space of both APAAC and QS order separate encoders and by combining both encodings. Further predictions of both classifiers are utilized to feed the Support Vector Machine (SVM) classifier that makes final predictions. The proposed meta predictor is evaluated over 7 different benchmark datasets, where it outperforms existing VHPPI predictors with an average performance of 3.07, 6.07, 2.95, and 2.85% in terms of accuracy, Mathews correlation coefficient, precision, and sensitivity, respectively. To facilitate the scientific community, the MP-VHPPI web server is available at https://sds_genetic_analysis.opendfki.de/MP-VHPPI/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.