Glucose forecasting serves as a backbone for several healthcare applications, including real-time insulin dosing in people with diabetes and physical activity optimization. This paper presents a study on the use of machine learning (ML) and deep learning (DL) methods for predicting glucose variability (GV) in individuals with open-source automated insulin delivery systems (AID). A three-stage experimental framework is employed in this work to systematically implement and evaluate ML/DL methods on a large-scale diabetes dataset collected from individuals with open-source AID. The first stage involves data collection, the second stage involves data preparation and exploratory analysis, and the third stage involves developing, fine-tuning, and evaluating ML/DL models. The performance and resource costs of the models are evaluated alongside relative and proportional errors for 17 GV metrics. Evaluation of fine-tuned ML/DL models shows considerable accuracy in glucose forecasting and variability analysis up to 48 h in advance. The average MAE ranges from 2.50 mg/dL for long short-term memory models (LSTM) to 4.94 mg/dL for autoregressive integrated moving average (ARIMA) models, and the RMSE ranges from 3.7 mg/dL for LSTM to 7.67 mg/dL for ARIMA. Model execution time is proportional to the amount of data used for training, with long short-term memory models having the lowest execution time but the highest memory consumption compared to other models. This work successfully incorporates the use of appropriate programming frameworks, concurrency-enhancing tools, and resource and storage cost estimators to encourage the sustainable use of ML/DL in real-world AID systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.