It is well established that, in visual pop-out search, reaction time (RT) performance is influenced by cross-trial repetitions versus changes of target-defining attributes. One instance of this is referred to as “positional priming of pop-out” (pPoP; Maljkovic and Nakayama, 1996). In positional PoP paradigms, the processing of the current target is examined depending on whether it occurs at the previous target or a previous distractor location, relative to a previously empty location (“neutral” baseline), permitting target facilitation and distractor inhibition to be dissociated. The present study combined RT measures with specific sensory- and motor-driven event-related lateralizations to track the time course of four distinct processing levels as a function of the target’s position across consecutive trials. The results showed that, relative to targets at previous target and “neutral” locations, the appearance of a target at a previous distractor location was associated with a delayed build-up of the posterior contralateral negativity wave, indicating that distractor positions are suppressed at early stages of visual processing. By contrast, presentation of a target at a previous target, relative to “neutral” and distractor locations, modulated the elicitation of the subsequent stimulus-locked lateralized readiness potential wave, indicating that post-selective response selection is facilitated if the target occurred at the same position as on the previous trial. Overall, the results of present study provide electrophysiological evidence for the idea that target location priming (RT benefits) does not originate from an enhanced coding of target saliency at repeated (target) locations; instead, they arise (near-) exclusively from processing levels subsequent to focal-attentional target selection.
In visual search tasks, repeating features or the position of the target results in faster response times. Such inter-trial ‘priming’ effects occur not just for repetitions from the immediately preceding trial but also from trials further back. A paradigm known to produce particularly long-lasting inter-trial effects–of the target-defining feature, target position, and response (feature)–is the ‘priming of pop-out’ (PoP) paradigm, which typically uses sparse search displays and random swapping across trials of target- and distractor-defining features. However, the mechanisms underlying these inter-trial effects are still not well understood. To address this, we applied a modeling framework combining an evidence accumulation (EA) model with different computational updating rules of the model parameters (i.e., the drift rate and starting point of EA) for different aspects of stimulus history, to data from a (previously published) PoP study that had revealed significant inter-trial effects from several trials back for repetitions of the target color, the target position, and (response-critical) target feature. By performing a systematic model comparison, we aimed to determine which EA model parameter and which updating rule for that parameter best accounts for each inter-trial effect and the associated n-back temporal profile. We found that, in general, our modeling framework could accurately predict the n-back temporal profiles. Further, target color- and position-based inter-trial effects were best understood as arising from redistribution of a limited-capacity weight resource which determines the EA rate. In contrast, response-based inter-trial effects were best explained by a bias of the starting point towards the response associated with a previous target; this bias appeared largely tied to the position of the target. These findings elucidate how our cognitive system continually tracks, and updates an internal predictive model of, a number of separable stimulus and response parameters in order to optimize task performance.
The present study investigated facilitatory and inhibitory positional priming using a variant of Maljkovic and Nakayama's (1996) priming of pop-out task. Here, the singleton target and the distractors could be presented in different visuospatial contexts-but identical screen locations-across trials, permitting positional priming based on individual locations to be disentangled from priming based on interitem configural relations. The results revealed both significant facilitatory priming, i.e., faster reaction times (RTs) to target presented at previous target relative to previously empty locations, and inhibitory priming, i.e., slower RTs to target at previous distractor relative to previously empty locations. However, both effects were contingent on repetitions versus changes of stimulus arrangement: While facilitation of target locations was dependent on the repetition of the exact item configuration (e.g., T-type followed by T-type stimulus arrangement), the inhibitory effect was more "tolerant," being influenced by repetitions versus changes of the item's visuospatial category (T-type followed by Z-type pattern; cf. Garner & Clement, 1963). The results suggest that facilitatory and inhibitory priming are distinct phenomena (Finke et al., 2009) and that both effects are sensitive to subtle information about the arrangement of the display items (Geyer, Zehetleitner, & Müller, 2010). The results are discussed with respect to the stage(s) of visual pop-out search that are influenced by positional priming.
The present study investigates the representations(s) underlying positional priming of visual ‘pop-out’ search (Maljkovic and Nakayama, 1996). Three search items (one target and two distractors) were presented at different locations, in invariant (Experiment 1) or random (Experiment 2) cross-trial sequences. By these manipulations it was possible to disentangle retinotopic, spatiotopic, and object-centered priming representations. Two forms of priming were tested: target location facilitation (i.e., faster reaction times – RTs– when the trial n target is presented at a trial n-1 target relative to n-1 blank location) and distractor location inhibition (i.e., slower RTs for n targets presented at n-1 distractor compared to n-1 blank locations). It was found that target locations were coded in positional short-term memory with reference to both spatiotopic and object-centered representations (Experiment 1 vs. 2). In contrast, distractor locations were maintained in an object-centered reference frame (Experiments 1 and 2). We put forward the idea that the uncertainty induced by the experiment manipulation (predictable versus random cross-trial item displacements) modulates the transition from object- to space-based representations in cross-trial memory for target positions.
The present study investigates the representations(s) underlying positional priming of visual 'pop-out' search (Maljkovic and Nakayama, 1996). Three search items (one target and two distractors) were presented at different locations, in invariant (Experiment 1) or random (Experiment 2) cross-trial sequences. By these manipulations it was possible to disentangle retinotopic, spatiotopic, and object-centered priming representations. Two forms of priming were tested: target location facilitation (i.e., faster reaction times -RTswhen the trial n target is presented at a trial n-1 target relative to n-1 blank location) and distractor location inhibition (i.e., slower RTs for n targets presented at n-1 distractor compared to n-1 blank locations). It was found that target locations were coded in positional short-term memory with reference to both spatiotopic and object-centered representations (Experiment 1 vs. 2). In contrast, distractor locations were maintained in an object-centered reference frame (Experiments 1 and 2). We put forward the idea that the uncertainty induced by the experiment manipulation (predictable versus random cross-trial item displacements) modulates the transition from object-to space-based representations in cross-trial memory for target positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.