Pressureless sintering to obtain high density boron carbide-titanium diboride composites by in-situ reaction was studied. Pressureless sintering behavior of this material was investigated between 1800-2150 .The effects of composition, sintering temperature and tine were examined. Density up to 98.5% T.D. was reached at 2150. Maximum values of flexural strength (502 MPa), hardness (33 Gpa) and fracture toughnes (4.6 MPa·m1/2) were observed in the specimens containing 15 vol.% TiB2.
The binder system removal was studied in a laminated B4C ceramics prepared by tape casting and lamination with castor oil, polyvinyl butyral(PVB) and di-n-butyl phthalate (DBP) as dispersant, binder and plasticizer, respectively. Thermo gravimetric analysis and Fourier transform infrared spectromer was used to examine the degradation of the binder system. The degradation behavior of the pure organics, single sheet and laminated B4C body were investigated. The results indicate that nitrog4en was selected as the binder system removal atmosphere and two decomposition temperature ranges was obtained for organics. A model based on diffusion can be used to predict the binder system removal time for a certain thickness of laminated B4C.
This Industrial economy in the urban development of the enterprise, technology, modern enterprises as the main innovators, so that our community has increasingly become a corporate social. Scientific management, organizational functions, administration, behavioral science, management science, systems science, management knowledge is increasingly interdisciplinary present trends, and the mathematics, physics, chemistry, biology, computer integration in the economic system, artificial intelligence on the ongoing development, and will fully launch the twenty-first century, human intelligence works. Urban economic growth in the information era of digital development, will promote economic development and enhance the total GDP, the digital city and digital management of exploration into the political, economic and social topics of common concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.