The task of RGBT tracking aims to take the complementary advantages from visible spectrum and thermal infrared data to achieve robust visual tracking, and receives more and more attention in recent years. Existing works focus on modality-specific information integration by introducing modality weights to achieve adaptive fusion or learning robust feature representations of different modalities. Although these methods could effectively deploy the modality-specific properties, they ignore the potential values of modality-shared cues as well as instance-aware information, which are crucial for effective fusion of different modalities in RGBT tracking. In this paper, we propose a novel Multi-Adapter convolutional Network (MANet) to jointly perform modality-shared, modality-specific and instance-aware feature learning in an end-to-end trained deep framework for RGBT tracking. We design three kinds of adapters within our network. In a specific, the generality adapter is to extract shared object representations, the modality adapter aims at encoding modality-specific information to deploy their complementary advantages, and the instance adapter is to model the appearance properties and temporal variations of a certain object. Moreover, to reduce computational complexity for real-time demand of visual tracking, we design a parallel structure of generic adapter and modality adapter. Extensive experiments on two RGBT tracking benchmark datasets demonstrate the outstanding performance of the proposed tracker against other state-ofthe-art RGB and RGBT tracking algorithms.
Abstract-On the basis of the compressed sensing theory, this study proposed an improved wavelet sparse represented compressed sensing based image fusion algorithm. This algorithm firstly got the wavelet sparse domain linear measurement values of the original images by the dual radial sampling mode. Then a simple maximum absolute value fusion rule was adopted on the compressed sensing domain. Finally, the minimum total variation method was used to reconstruct the fused image. The experiment result shows that this algorithm has good fusion effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.