Human histone H2AX is rapidly phosphorylated on serine 139 in response to DNA double-strand breaks and plays a crucial role in tethering the factors involved in DNA repair and damage signaling. Replication stress caused by hydroxyurea or UV also initiates H2AX phosphorylation in S-phase cells, although UV-induced H2AX phosphorylation in non-cycling cells has recently been observed. Here we study the UV-induced H2AX phosphorylation in human primary fibroblasts under growth-arrested conditions. This reaction absolutely depends on nucleotide excision repair (NER) and is mechanistically distinct from the replication stress-induced phosphorylation. The treatment of cytosine-β-D-arabinofuranoside strikingly enhances the NER-dependent H2AX phosphorylation and induces the accumulation of replication protein A (RPA) and ATR-interacting protein (ATRIP) at locally UV-damaged subnuclear regions. Consistently, the phosphorylation appears to be mainly mediated by ataxia-telangiectasia mutated and Rad3-related (ATR), although Chk1 (Ser345) is not phosphorylated by the activated ATR. The cellular levels of DNA polymerases δ and ϵ and proliferating cell nuclear antigen are markedly reduced in quiescent cells. We propose a model that perturbed gap-filling synthesis following dual incision in NER generates single-strand DNA gaps and hence initiates H2AX phosphorylation by ATR with the aid of RPA and ATRIP.
We report the characterization of a Japanese woman who exhibited many freckles and skin cancers in sun-exposed areas, but displayed no photosensitivity. Fibroblasts (KPSX7) derived from this patient showed similar UV sensitivity to that of normal human fibroblasts. The KPSX7 cells showed normal levels of unscheduled DNA synthesis, recovery of RNA synthesis, recovery of replicative DNA synthesis, protein-binding ability to UV-damaged DNA, and post-translational modification of xeroderma pigmentosum (XP) C. These results indicate that the patient had neither XP nor Cockayne syndrome. Although these results suggest that the KPSX7 cells were proficient in nucleotide excision repair activity, host-cell reactivation (HCR) activity of KPSX7 cells was reduced. Furthermore, introduction of UV damage endonuclease into the cells restored repair activity in the HCR assay to almost normal levels. These results indicate that KPSX7 cells are defective for some types of repair activity in UV-damaged DNA. In summary, the patient had a previously unknown disorder related to UV-induced carcinogenesis, with defective DNA repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.