Chemical etching of SiC was found to proceed in pure water with the assistance of a Pt catalyst. A 4H-SiC (0001) wafer was placed and slid on a polishing pad in pure water, on which a thin Pt film was deposited to give a catalytic nature. Etching of the wafer surface was observed to remove protrusions preferentially by interacting with the Pt film more frequently, thus flattening the surface. In the case of an on-axis wafer, a crystallographically ordered surface was obtained with a straight step-and-terrace structure, the height of which corresponds to that of an atomic bilayer of Si and C. The etching rate depended upon the electrochemical potential of Pt. The vicinal surface was observed at the potential at which the Pt surface was bare. The primary etching mechanism was hydrolysis with the assistance of a Pt catalyst. This method can, therefore, be used as an environmentally friendly and sustainable technology.
We used catalyst-referred etching, which is an abrasive-free planarization method, to produce an extremely smooth surface on a 4H-SiC substrate. However, the removal rate was lower than that obtained by chemical mechanical polishing, which is the planarization method generally used for SiC substrates. To improve the removal rate, we investigated its dependence on rotational velocity and processing pressure. We found that the removal rate increases in proportion to both rotational velocity and processing pressure. A lapped 4H-SiC substrate was planarized under conditions that achieved the highest removal rate of approximately 500 nm/h. A smooth surface with a root-mean square roughness of less than 0.1 nm was fabricated within 15 min. Because the surface, which was processed under conditions of high rotational velocity and high processing pressure, consisted of a step–terrace structure, it was well ordered up to the topmost surface.
Hydrofluoric acid (HF) etching of the SiC surface assisted by Pt as a catalyst is investigated using density functional theory. Etching is initiated by the dissociative adsorption of HF on step-edge Si, forming a five-fold coordinated Si moiety as a metastable state. This is followed by breaking of the Si–C back-bond by a H-transfer process. The gross activation barrier strongly correlates with the stability of the metastable state and is reduced by the formation of Pt–O chemical bonds, leading to an enhancement of the etching reaction.
A catalytically assisted etching system was developed for the ultra-precision fabrication of optical components, such as X-ray mirrors and extreme-ultraviolet mask blanks. This study demonstrates that an atomically smooth surface with a sub-Angstrom root-mean-square roughness could be achieved on a SiO 2 glass substrate using pure water and Pt as the etching solution and catalyst, respectively. Density functional theory calculations confirmed that the mechanistic pathway was involved in catalyzed hydrolysis. The significant roles of the catalyst were clarified to be the dissociation of water molecules and the stabilization of a meta-stable state, in which a hypervalent silicate state is induced, and the Si-O backbond is elongated and loosened. To confirm the role of the catalyst, the Pt metal was replaced by Au, and the observed drastic difference in the removal rate was attributed to the degree of stabilization of the metastable state.
A novel abrasive-free polishing method called catalyst-referred etching (CARE) has been developed. CARE can be used to chemically planarize a silicon carbide (SiC) surface with an etching agent activated by a catalyst. Platinum (Pt) and hydrofluoric (HF) acid are used as the catalyst and etchant, respectively. CARE can produce an atomically flat and crystallographically highly ordered surface of 4HSiC (0001) with a root-mean-square roughness of less than 0.1 nm regardless of the cut-off angle. However, industrial use of CARE is difficult because of HF acid usage. In this study, pure water was investigated as an alternative etchant to HF acid. We examined CARE using pure water by applying it to the planarization of a 4HSiC substrate and observed a feasible performance. The removal mechanism is considered to be the dissociative adsorption of water molecules to the SiC bonds of the topmost Si atom, namely the hydrolysis of the back bond, and the catalysis of Pt is considered to enhance the reaction. CARE with pure water is expected to represent a breakthrough method for surface processing of SiC, and will be widely applied in industrial processes such as planarization after high temperature processing in device fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.