Background: Katanin p60 is a protein that actively severs microtubules. Results: Mutations within the AAAϩ pore of katanin p60 and in the C-terminal regions of tubulins perturb efficient microtubule severing. Conclusion: Interactions between the conserved residues in the katanin p60 pore and the acidic tails of both tubulins may be important. Significance: Both tubulin molecules are essential for microtubule severing by katanin.
Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development.
AAA (ATPase associated with various cellular activities) proteins remodel substrate proteins and protein complexes upon ATP hydrolysis. Substrate remodelling is diverse, e.g. proteolysis, unfolding, disaggregation and disassembly. In the oligomeric ring of the AAA protein, there is a conserved aromatic residue which lines the central pore. Functional analysis indicates that this conserved residue in AAA proteases is involved in threading unfolded polypeptides. Katanin and spastin have microtubule-severing activity. These AAA proteins also possess a conserved aromatic residue at the central pore, suggesting its importance in their biological activity. We have constructed pore mutants of these AAA proteins and have obtained in vivo and in vitro results indicating the functional importance of the pore motif. Degradation of casein by the Escherichia coli AAA protease, FtsH, strictly requires ATP hydrolysis. We have constructed several chimaeric proteases by exchanging domains of FtsH and its homologues from Caenorhabditis elegans mitochondria, and examined their ATPase and protease activities in vitro. Interestingly, it has been found that some chimaeras are able to degrade casein in an ATP-independent manner. The proteolysis is supported by either ATP[S] (adenosine 5'-[gamma-thio]triphosphate) or ADP, as well as ATP. It is most likely that substrate translocation in these chimaeras occurs by facilitated diffusion. We have also investigated the roles of C. elegans p97 homologues in aggregation/disaggregation of polyglutamine repeats, and have found that p97 prevents filament formation of polyglutamine proteins in an ATP-independent fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.