BackgroundGonadal fate in many reptiles, fish, and amphibians is modulated by the temperature experienced during a critical period early in life (temperature-dependent sex determination; TSD). Several molecular processes involved in TSD have been described but how the animals “sense” environmental temperature remains unknown. We examined whether the stress-related hormone cortisol mediates between temperature and sex differentiation of pejerrey, a gonochoristic teleost fish with marked TSD, and the possibility that it involves glucocorticoid receptor- and/or steroid biosynthesis-modulation.Methodology/Principal FindingsLarvae maintained during the period of gonadal sex differentiation at a masculinizing temperature (29°C; 100% males) consistently had higher cortisol, 11-ketotestoterone (11-KT), and testosterone (T) titres than those at a feminizing temperature (17°C; 100% females). Cortisol-treated animals had elevated 11-KT and T, and showed a typical molecular signature of masculinization including amh upregulation, cyp19a1a downregulation, and higher incidence of gonadal apoptosis during sex differentiation. Administration of cortisol and a non-metabolizable glucocorticoid receptor (GR) agonist (Dexamethasone) to larvae at a “sexually neutral” temperature (24°C) caused significant increases in the proportion of males.Conclusions/SignificanceOur results suggest a role of cortisol in the masculinization of pejerrey and provide a possible link between stress and testicular differentiation in this gonochoristic TSD species. Cortisol role or roles during TSD of pejerrey seem(s) to involve both androgen biosynthesis- and GR-mediated processes. These findings and recent reports of cortisol effects on sex determination of sequential hermaphroditic fishes, TSD reptiles, and birds provide support to the notion that stress responses might be involved in various forms of environmental sex determination.
In many ectotherm species the gonadal fate is modulated by temperature early in life [temperature-dependent sex determination (TSD)] but the transducer mechanism between temperature and gonadal differentiation is still elusive. We have recently shown that cortisol, the glucocorticoid stress-related hormone in vertebrates, is involved in the TSD process of pejerrey, Odontesthes bonariensis. Particularly, all larvae exposed to a male-producing temperature (MPT, 29 C) after hatching showed increased whole-body cortisol and 11-ketotestosterone (11-KT; the main bioactive androgen in fish) levels and developed as males. Moreover, cortisol administration at an intermediate, mixed sex-producing temperature (MixPT, 24 C) caused increases in 11-KT and in the frequency of males, suggesting a relation between this glucocorticoid and androgens during the masculinization process. In order to clarify the link between stress and masculinization, the expression of hydroxysteroid dehydrogenase (hsd)11b2, glucocorticoid receptors gr1 and gr2, and androgen receptors ar1 and ar2 was analyzed by quantitative real time PCR and in situ hybridization in larvae reared at MPT, MixPT, and female-producing temperature (FPT, 17 C) during the sex determination period. We also analyzed the effects of cortisol treatment in larvae reared at MixPT and in adult testicular explants incubated in vitro. MPT and cortisol treatment produced significant increases in hsd11b2 mRNA expression. Also, gonadal explants incubated in the presence of cortisol showed increases of 11-KT levels in the medium. Taken together these results suggest that cortisol promotes 11-KT production during high temperature-induced masculinization by modulation of hsd11b2 expression and thus drives the morphogenesis of the testes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.