The identification, synthesis, and evaluation of a series of naphthoquinone derivatives as selective inhibitors of human arylamine N-acetyltransferase 1 and mouse arylamine N-acetyltransferase 2 are described. The compounds undergo a distinctive color change (red --> blue) upon binding to these human and mouse NAT isoenzymes driven by a proton transfer event. No color change is observed in the presence of functionally distinct but highly similar isoenzymes which are >70% identical. These molecules may be used as sensors to detect the presence of human NAT1 in cell lysates.
The ammonium-directed olefinic oxidation of a range of cyclic allylic and homoallylic amines has been investigated. Functionalization of a range of allylic 3-(N,N-dibenzylamino)cycloalk-1-enes with m-CPBA in the presence of Cl(3)CCO(2)H gives exclusively the corresponding syn-epoxide for the 5-membered ring (>99:1 dr), the anti-epoxide for the 8-membered ring (>99:1 dr), and predominantly the anti-epoxide for the 7-membered ring (94:6 dr). Oxidation of the homoallylic amines 3-(N-benzylamino)methylcyclohex-1-ene and 3-(N,N-dibenzylamino)methylcyclohex-1-ene gave, in both cases, the corresponding N-protected 1,2-anti-2,3-syn-3-aminomethylcyclohexane-1,2-diol with high levels of diastereoselectivity (>or=90:10 dr). The versatile synthetic intermediates resulting from these oxidation reactions are readily transformed into a range of amino diols.
The H andC NMR data of synthetic samples of (S)-N(1)-methyl-2-[2'-(3″-hydroxy-4″-methoxyphenyl)ethyl]-1,2,3,4-tetrahydroquinoline, the originally proposed structure of the Hancock alkaloid (-)-galipeine, do not match those of the natural product. Herein, the preparation of the regioisomer (S)-N(1)-methyl-2-[2'-(3″-methoxy-4″-hydroxyphenyl)ethyl]-1,2,3,4-tetrahydroquinoline is reported, the H andC NMR data of which are in excellent agreement with those of (-)-galipeine. Comparison of specific rotation data enables assignment of the absolute (S)-configuration of the alkaloid, and together, these data engender the structural revision of (-)-galipeine to (S)-N(1)-methyl-2-[2'-(3″-methoxy-4″-hydroxyphenyl)ethyl]-1,2,3,4-tetrahydroquinoline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.