Ralstonia solanacearum is a devastating soil-borne bacterial pathogen capable of infecting many plant species, including tomato (Solanum lycopersicum). However, the perception of Ralstonia by the tomato immune system and the pathogen’s counter-defense strategy remain largely unknown. Here, we show that PehC, a specific exo-polygalacturonase secreted by Ralstonia, acts as an elicitor that triggers typical immune responses in tomato and other Solanaceous plants. The elicitor activity of PehC depends on its N-terminal epitope, and not on its polygalacturonase activity. The recognition of PehC specifically occurs in tomato roots and relies on unknown receptor-like kinase(s). Moreover, PehC hydrolyzes plant pectin-derived oligogalacturonic acids (OGs), a type of damage-associated molecular pattern (DAMP), which leads to the release of galacturonic acid (GalA), thereby dampening DAMP-triggered immunity (DTI). Ralstonia depends on PehC for its growth and early infection and can utilize GalA as a carbon source in the xylem. Our findings demonstrate the specialized and dual functions of Ralstonia PehC, which enhance virulence by degrading DAMPs to evade DTI and produce nutrients, a strategy used by pathogens to attenuate plant immunity. Solanaceous plants have evolved to recognize PehC and induce immune responses, which highlights the significance of PehC. Overall, this study provides insight into the arms race between plants and pathogens.
Bacterial wilt caused by the soil-borne pathogen Ralstonia solanacearum is a destructive disease of tomato. Tomato cultivar Hawaii 7996 is well-known for its stable resistance against R. solanacearum . However, the resistance mechanism of Hawaii 7996 has not yet been revealed. Here, we showed that Hawaii 7996 activated root cell death response and exhibited stronger defense gene induction than the susceptible cultivar Moneymaker after R. solanacearum GMI1000 infection. By employing virus-induced gene silencing (VIGS) and CRISPR/Cas9 technologies, we found that SlNRG1 -silenced and SlADR1 -silenced/knockout mutant tomato partially or completely lost resistance to bacterial wilt, indicating that helper NLRs SlADR1 and SlNRG1, the key nodes of effector-triggered immunity (ETI) pathways, are required for Hawaii 7996 resistance. In addition, while SlNDR1 was dispensable for the resistance of Hawaii 7996 to R. solanacearum , SlEDS1, SlSAG101a /b , and SlPAD4 were essential for the immune signaling pathways in Hawaii 7996. Overall, our results suggested that robust resistance of Hawaii 7996 to R. solanacearum relied on the involvement of multiple conserved key nodes of the ETI signaling pathways. This study sheds light on the molecular mechanisms underlying tomato resistance to R. solanacearum and will accelerate the breeding of tomatoes resilient to diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.