Two noncentrosymmetric ternary pnictides, CaAgP and CaAgAs, are reported as topological line-node semimetals protected solely by mirror-reflection symmetry. The band gap vanishes on a circle in momentum space, and surface states emerge within the circle. Extending this study to spin-orbit coupled systems reveals that, compared with CaAgP, a substantial band gap is induced in CaAgAs by large spin-orbit interaction. The resulting states are a topological insulator, in which the Z 2 topological invariant is given by 1; 000. To clarify the Z 2 topological invariants for time-reversal-invariant systems without spatial-inversion symmetry, we introduce an alternative way to calculate the invariants characterizing a line node and topological insulator for mirror-reflection-invariant systems.
We develop a theory of the tunneling spectroscopy for superconducting topological insulators (STIs), where the surface Andreev bound states (SABSs) appear as helical Majorana fermions. Based on the symmetry and topological nature of parent topological insulators, we find that the SABSs in the STIs have a profound structural transition in the energy dispersions. The transition results in a variety of Majorana fermions, by tuning the chemical potential and the effective mass of the energy band. We clarify that Majorana fermions in the vicinity of the transitions give rise to robust zero bias peaks in the tunneling conductance between normal metal/STI junctions.
Crystal point group symmetry is shown to protect Majorana fermions (MFs) in spinfull superconductors (SCs). We elucidate the condition necessary to obtain MFs protected by the point group symmetry. We argue that superconductivity in Sr2RuO4 hosts a topological phase transition to a topological crystalline SC, which accompanies a d-vector rotation under a magnetic field along the c axis. Taking all three bands and spin-orbit interactions into account, symmetry-protected MFs in the topological crystalline SC are identified. Detection of such MFs provides evidence of the d-vector rotation in Sr2RuO4 expected from Knight shift measurements but not yet verified.
We self-consistently study surface states of superconducting topological insulators. We clarify that, if a topologically trivial bulk s-wave pairing symmetry is realized, parity mixing of pair potential near the surface is anomalously enhanced by surface Dirac fermions, opening an additional surface gap larger than the bulk one. In contrast to classical s-wave superconductors, the resulting surface density of state hosts an extra coherent peak at the induced gap besides a conventional peak at the bulk gap. We also find that no such extra peak appears for odd-parity superconductors with a cylindrical Fermi surface. Our calculation suggests that the simple U-shaped scanning tunneling microscope spectrum in CuxBi2Se3 does not originate from s-wave superconductivity, but can be explained by odd-parity superconductivity with a cylindrical Fermi surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.