Aim To investigate the effect of carvedilol on liver fibrosis and hepatic sinusoidal capillarization in mice with carbon tetrachloride (CCl 4 )-induced fibrosis. Methods A liver fibrosis mouse model was induced by intraperitoneal CCl 4 injection for 8 weeks. The mice were divided into five experimental groups: the normal group, the oil group, the CCl 4 group, the CCl 4 +carvedilol (5 mg/kg/d) group, and the CCl 4 +carvedilol (10 mg/kg/d) group. The extent of liver fibrosis was evaluated by histopathological staining, and the changes in fenestrations of hepatic sinus endothelial cells were observed by scanning electron microscope (SEM). The expression of α-smooth muscle actin (α-SMA) and vascular endothelial markers was detected by immunohistochemistry and Western blot assays. The effect of carvedilol on cell apoptosis was studied via Terminal deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling (TUNEL) assay, and the serum levels of matrix metalloproteinase-8 (MMP-8), vascular endothelial growth factor (VEGF), and angiopoietin-2 were detected through a Luminex assay. Results Liver fibrosis in CCl 4 -treated mice was attenuated by reduced accumulation of collagen and the reaction of inflammation with carvedilol treatment. Carvedilol reduced the activation of hepatic stellate cells (HSCs) and increased the number of apoptotic cells. The expression of α-SMA, CD31, CD34 and VWF (von Willebrand factor) was significantly decreased after carvedilol treatment. In addition, the number of fenestrae in the hepatic sinusoid showed notable differences between the groups, and the serum levels of MMP-8, VEGF and angiopoietin-2 were increased in the mice with liver fibrosis and reduced by carvedilol treatment. Conclusion The study demonstrated that carvedilol could prevent further development of liver fibrosis and hepatic sinusoidal capillarization in mice with CCl 4 -induced fibrosis.
AIMTo clarify the role of proteinase-activated receptor 2 (PAR2) in hepatocellular carcinoma, especially in the process of metastasis.METHODSPAR2 expression levels were assessed by qRT-PCR and immunohistochemistry (IHC) in patient tissues and in hepatocellular carcinoma cell lines SMMC-7721 and HepG2. Cell proliferation and metastasis were assessed both in vitro and in vitro. Immunoblotting was carried out to monitor the levels of mitogen-activated protein kinase (MAPK) and epithelial-mesenchymal transition markers.RESULTSThe prognosis was significantly poorer in patients with high PAR2 levels than in those with low PAR2 levels. Patients with high PAR2 levels had advanced tumor stage (P = 0.001, chi-square test), larger tumor size (P = 0.032, chi-square test), and high microvascular invasion rate (P = 0.037, chi-square test). The proliferation and metastasis ability of SMMC-7721 and HepG2 cells was increased after PAR2 overexpression, while knockdown of PAR2 decreased the proliferation and metastasis ability of SMMC-7721 and HepG2 cells. Knockdown of PAR2 also inhibited hepatocellular carcinoma tumor cell growth and liver metastasis in nude mice. Mechanistically, PAR2 increased the proliferation ability of SMMC-7721 and HepG2 cells via ERK activation. Activated ERK further promoted the epithelial-mesenchymal transition of these cells, which endowed them with enhanced migration and invasion ability.CONCLUSIONThese data suggest that PAR2 plays an important role in the proliferation and metastasis of hepatocellular carcinoma. Therefore, targeting PAR2 may present a favorable target for treatment of this malignancy.
Background Global research on endoscopic therapies in combination with partial splenic embolization (PSE) for variceal hemorrhage (VH) is limited. Therefore, we aimed to evaluate the efficacy and safety of endoscopy plus PSE (EP) treatment in comparison to endoscopic (E) treatment for the secondary prophylaxis of VH in cirrhosis patients with hypersplenism. Methods Cirrhosis patients with hypersplenism (platelet count < 100, 000/µL) and those who had recovered from an episode of VH were enrolled in a multicenter randomized controlled trial. The participants were randomly assigned into EP and E groups in a 1:1 ratio. The primary endpoint was variceal rebleeding, and the secondary endpoints were severe variceal recurrence and mortality during the 2-year follow-up. Hematological indices, serum biochemical parameters, and the Child–Pugh score were measured at each time point. Results From June 2016 to December 2019, 108 patients were enrolled in the study, among which 102 patients completed the protocol (51 in EP and 51 in E group). The rebleeding rate of the varices was significantly reduced in the EP group compared to that in the E group during the 2 years (16% vs. 31%, p < 0.001). The EP group showed a significantly lower variceal recurrence rate than the E group (22% vs. 67%, p < 0.001). The COX proportional hazard models revealed that grouping was an independent predictor for variceal rebleeding (H = 0.122, 95% CI 0.055–0.270, p < 0.001) and variceal recurrence (hazard ratio, H = 0.160, 95% CI 0.077–0.332, p < 0.001). The peripheral blood cell count, Child–Pugh class/score, albumin concentration, and coagulation function in the EP group improved significantly compared to the values observed in the E group at any time point (p < 0.05). Conclusions The EP treatment was more effective in preventing variceal rebleeding and variceal recurrence than the conventional E treatment during the secondary prophylaxis of VH in cirrhosis patients with hypersplenism. Furthermore, the EP treatment could significantly increase the peripheral blood cell count and albumin concentration and also improved the coagulation function and the Child–Pugh score. Clinical trials registration Trial registration number ClincialTrials.gov: NCT02778425. The URL of the clinical trial: https://clinicaltrials.gov/
Aim Carvedilol is a nonselective beta-blocker used to reduce portal hypertension. This study investigated the effects and potential mechanisms of carvedilol in angiotensin II- (Ang II-) induced hepatic stellate cell (HSC) proliferation and contraction. Methods The effect of carvedilol on HSC proliferation was measured by Cell Counting Kit-8 (CCK-8). Cell cycle progression and apoptosis in HSCs were determined by flow cytometry. A collagen gel assay was used to confirm HSC contraction. The extent of liver fibrosis in mice was evaluated by hematoxylin-eosin (H&E) and Sirius Red staining. Western blot analyses were performed to detect the expression of collagen I, collagen III, α-smooth muscle actin (α-SMA), Ang II type I receptor (AT1R), RhoA, Rho-kinase 2 (ROCK2), and others. Results The results showed that carvedilol inhibited HSC proliferation and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Carvedilol also modulated Bcl-2 family proteins and increased apoptosis in Ang II-treated HSCs. Furthermore, carvedilol inhibited HSC contraction induced by Ang II, an effect that was associated with AT1R-mediated RhoA/ROCK2 pathway interference. In addition, carvedilol reduced α-SMA expression and collagen deposition and attenuated liver fibrosis in carbon tetrachloride (CCl4)-treated mice. The in vivo data further confirmed that carvedilol inhibited the expression of angiotensin-converting enzyme (ACE), AT1R, RhoA, and ROCK2. Conclusions The results indicated that carvedilol dose-dependently inhibited Ang II-induced HSC proliferation by impeding cell cycle progression, thus alleviating hepatic fibrosis. Furthermore, carvedilol could inhibit Ang II-induced HSC contraction by interfering with the AT1R-mediated RhoA/ROCK2 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.