Background: The development of heart failure (HF) remains a common complication following an acute myocardial infarction (AMI), and is associated with substantial adverse outcomes. However, the specific predictive biomarkers and candidate therapeutic targets for post-infarction HF have not been fully established. We sought to perform a weighted gene co-expression network analysis (WGCNA) to identify key modules, hub genes, and possible regulatory targets involved in the development of HF following AMI. Methods: Genes exhibiting the most (top 50%) variation in expression levels across samples in a GSE59867 dataset were imported to the WGCNA. Gene Ontology and pathway enrichment analyses were performed on genes identified in the key module by Metascape. Gene regulatory networks were constructed using the microarray probe reannotation and bioinformatics database. Hub genes were screened out from the key module and validated using other datasets. Results: A total of 10,265 most varied genes and six modules were identified between AMI patients who developed HF within 6 months of follow-up and those who did not. Specifically, the blue module was found to be the most significantly related to the development of post-infarction HF. Functional enrichment analysis revealed that the blue module was primarily associated with the inflammatory response, immune system, and apoptosis. Seven transcriptional factors, including SPI1, ZBTB7A, IRF8, PPARG, P65, KLF4, and Fos, were identified as potential regulators of the expression of genes identified in the blue module. Further, non-coding RNAs, including miR-142-3p and LINC00537, were identified as having close interactions with genes from the blue module. A total of six hub genes (BCL3, HCK, PPIF, S100A9, SERPINA1, and TBC1D9B) were identified and validated for their predictive value in identifying future HFs. Conclusions: By using the WGCNA, we provide new insights into the underlying molecular mechanism and molecular markers correlated with HF development following an AMI, which may serve to improve risk stratification, therapeutic decisions, and prognosis prediction in AMI patients.
Background: Global longitudinal strain (GLS) based on two-dimensional speckletracking echocardiography (2D-STE) might better reflect left ventricular (LV) contractile performance than conventional parameters. Recently, left atrial (LA) strain has been used as a more accurate alternative to assessing LA performance. The aim in this study was to assess the clinical prognostic value of left ventricular GLS (LV GLS) and peak atrial longitudinal strain (PALS) in patients after ST-segment-elevation myocardial infarction (STEMI). Methods:The study enrolled 199 patients who underwent primary percutaneous coronary intervention (pPCI) for first STEMI. Conventional and 2D-STE were performed within 48 h after pPCI. LV GLS and PALS were related to LV remodeling at 6-month follow-up and to adverse events. Results: Diabetes mellitus, GLS and PALS independently predicted LV remodeling.With multivariable Cox proportional hazards, diabetes mellitus, GLS and PALS were predictive of adverse clinical outcomes. However, PALS did not add significant incremental value beyond LV GLS in the prediction of LV remodeling (increase in area under the receiver-operator characteristic curve [AUC]: 0.05, p = 0.24) and clinical events (even a decrease in AUC: 0.03, p = 0.69). Conclusions:Both GLS and PALS provide independent prognostic value for adverse LV remodeling and clinical outcomes after STEMI. However, the ability of the combination of PALS and GLS to predict LV remodeling and clinical outcomes may not be superior to that of a single indicator.
Obstructive sleep apnea syndrome (OSAS) can lead to alterations in right ventricular (RV) performance and pulmonary vascular haemodynamics. Additionally, altitude-related hypoxia is associated with pulmonary vasoconstriction, and the effect of high-altitude on the pulmonary circulation in OSAS patients can be further altered. We sought to assess alterations in RV morphology and function in OSAS patients living at high altitude by way of 2-dimensional speckle tracking echocardiography (2D-STE), real-time 3- dimensional echocardiography (RT-3DE) and cardiac biomarkers. We also evaluate the impact of continuous positive airway pressure (CPAP) treatment on RV performance. Seventy-one patients with newly diagnosed OSAS and thirty-one controls were included in this study. All individuals were assessed for cardiac biomarkers as well as underwent 2D-STE and RT-3DE. Forty-five OSAS patients underwent CPAP therapy for at least 24 weeks and were studied before and after CPAP treatment. RT-3DE was used to measure RV volume, and calculate RV 3D ejection fraction (3D RVEF). Peak systolic strain was determined. Cardiac biomarkers, including C-reactive protein (CRP), N-terminal pro-B-type natriuretic peptide, and cardiac troponin T were also measured. Right atrium volume index, RV volume, RV volume index, systolic pulmonary artery pressure (sPAP), pulmonary vascular resistance (PVR) and level of serum CRP were significantly higher in OSAS group, while OSAS patients showed lower 3D RVEF and RV longitudinal strains. Compared to the patients with sPAP < 40 mmHg, RV longitudinal strains in patients with sPAP ≥ 40 mmHg were lower. Both RV global longitudinal strain and sPAP were associated with apnea–hypopnea index. Patients treated with 6 months of CPAP therapy had significant improvement in RV geometry and performance. RV structural abnormalities and RV function impairments were observed in OSAS patients living at moderate high altitude compared to control highlanders. The reversibility of these changes after application of CPAP were further confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.