Three relatively new applications for controlling wind and water erosion using polyacrylamide copolymers arc described that take advantage of their ability to stabilize and add structure to soil. In the first application, low concentrations of anionic, high purity polyacrylamide (PAM) eliminates sediment in runoff water by more than 90% when added to irrigation water at 10 ppm, or at a rate of 1 to 2 kg ha-1 per irrigation. Lab-furrow tests were utilized to characterize the role of molecular weight. charge, and ion concentrations in applying PAM during irrigation. In the second application, PAM is applied at construction sites and road cuts at rates of 22.5 kg ha -2 (tenfold higher rates than in irrigation control) resulting in reduction in sediment runoff by 60-85% during (simulated) heavy rains. Finally, a formulation of PAM mixed with aluminum chlorohydrate and cross-linked poly(acrylic acid) superabsorbent at a ratio of (6:1:1) has been applied to create helicopter landing pads that minimize dust clouds during helicopter operation. This formulation was specifically developed to minimize dust clouds during landing of helicopters in fine, and soils such as those potentially encountered in the Middle East. A biodegradable alternative to PAM, acid-hydrolyzed cellulose microfibrils, was tested in lab-scale furrows and was less effective than PAM at similar concentrations, but show promises. Microtibrils reduce sediment run-off in lab-furrow tests by 88% when applied at eight-to tenfold the concentration of PAM.
The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.
Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.