a b s t r a c tOpinion mining mainly involves three elements: feature and feature-of relations, opinion expressions and the related opinion attributes (e.g. Polarity), and feature-opinion relations. Although many works have emerged to achieve its aim of gaining information, the previous researches typically handled each of the three elements in isolation, which cannot give sufficient information extraction results; hence, the complexity and the running time of information extraction is increased. In this paper, we propose an opinion mining extraction algorithm to jointly discover the main opinion mining elements. Specifically, the algorithm automatically builds kernels to combine closely related words into new terms from word level to phrase level based on dependency relations; and we ensure the accuracy of opinion expressions and polarity based on: fuzzy measurements, opinion degree intensifiers, and opinion patterns. The 3458 analyzed reviews show that the proposed algorithm can effectively identify the main elements simultaneously and outperform the baseline methods. The proposed algorithm is used to analyze the features among heterogeneous products in the same category. The feature-by-feature comparison can help to select the weaker features and recommend the correct specifications from the beginning life of a product. From this comparison, some interesting observations are revealed. For example, the negative polarity of video dimension is higher than the product usability dimension for a product. Yet, enhancing the dimension of product usability can more effectively improve the product.
This article presents comparison between data rate or rate control, that is, video transmission rate control algorithm and transmission power control algorithms for two different cases. First, energy consumption due to high peak variable data rates in video transmission. Second, energy depletion due to high transmission power consumption and dynamic nature of wireless on-body channel. The former one focuses on constant (fixed) transmission power level and variable data rate (''severe'' conditions), for example, medical monitoring of the emergency patients. The latter considers variable transmission power level and constant (fixed) data rate (''less severe'' conditions), for example, electrocardiography measurement for patients in wireless body sensor networks. Besides, energy efficiency comparison analysis of battery-driven or video transmission rate control algorithm and transmission power control-driven or power control algorithm is presented. Finally, proposed algorithms are analyzed and categorized as energy-efficient and battery-friendly for medical applications in wireless body sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.