Frequent episodes of heat threaten sustainable agriculture in Egypt. This study is an urgent call to select tolerant genotypes of heat and discover the predicted screening phenotypic parameters. Here, twenty spring wheat genotypes were exposed to heat stress under field conditions for screening heat tolerance. Stress environments were simulated by delaying the sowing date by 53 and 58 days than the normal environments for two successive seasons. Stressed plants received the highest peak of heat during the reproductive growth stage. Eight phenotypic parameters were measured to evaluate genotype tolerance. Mean performance, reduction percentage/trait, and heat susceptibility index parameters were calculated. Additionally, the pollen grain viability during spike emergence and the germinability of producing grains were investigated. Results demonstrated: (1) Highly significant differences (
P < 0.01
) between genotypes, treatments and genotypes by treatments in grain yield and other traits in both studied seasons, (2) significant reduction in all studied traits compared to the non-stress environment, (3) the overall yield reduction, based on grain yield/m
2
, was 40.17, 41.19 % in the first and second seasons, respectively, and the most tolerant genotypes were Masr2, Sids1, Giza 171 and Line 9, (4) limited impact of heat has detected on pollen grains viability and germinability, and (5) grain yield as a selection criterion for heat stress remains the most reliable yardstick.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.