Summary Today, cloud computing has developed as one of the important emergent technologies in communication and Internet. It offers on demand, pay per use access to infrastructure, platforms, and applications. Due to the increase in its popularity, the huge number of requests need to be handled in an efficient manner. Task scheduling as one of the challenges in the cloud computing supports the requests for assigning a particular resource so as to perform effectively. In the resource management, task scheduling is performed where there is the dependency between tasks. Many approaches and case studies have been developed for the scheduling of these tasks. Up to now, a systematic literature review (SLR) has not been presented to discover and evaluate the task scheduling approaches in the cloud computing environment. To overcome, this paper presents an SLR‐based analysis on the task scheduling approaches that classify into (a) single cloud environments that evaluate cost‐aware, energy‐aware, multi‐objective, and QoS‐aware approaches in task scheduling; (b) multicloud environment that evaluates cost‐aware, multi‐objective, and QoS‐aware task scheduling; and (c) mobile cloud environment that is energy‐aware and QoS‐aware task scheduling. The analytical discussions are provided to show the advantages and limitations of the existing approaches.
Summary In the last decade, the scale of heterogeneous computing (HC) systems such as heterogeneous cloud computing environments was growing like never before. So network failures are unavoidable in such systems, which affect system reliability. Since the task scheduling algorithm in HC is challenging, we investigate a new reliability‐aware task scheduling algorithm (RATSA) in this paper. RATSA is designed to schedule tasks on directed acyclic graphs (DAGs) by using the shuffled frog‐leaping algorithm (SFLA) and genetic algorithm (GA) as evolutionary algorithms. The population‐based SFLA‐GA is applied to optimize makespan in the RATSA as an NP‐complete problem. Moreover, the proposed algorithm exploits a new heuristic‐based earliest finish time technique for task mapping to virtual machines (VMs) section to decrease the failure rate. Experimental results on random DAGs indicate that RATSA improves some current algorithms in terms of reliability and has acceptable performance in makespan. The results reveal that the RATSA decreases the overall failure rate by 43% compared to some current task scheduling algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.