Emergency medicine trainees were found to be able to perform and interpret focused echocardiography reliably after a short duration of training.
BackgroundConcerns over high transmission risk of SARS-CoV-2 have led to innovation and usage of an aerosol box to protect healthcare workers during airway intubation in patients with COVID-19. Its efficacy as a barrier protection in addition to the use of a standard personal protective equipment (PPE) is not fully known. We performed a simulated study to investigate the relationship between aerosol box usage during intubation and contaminations on healthcare workers pre-doffing and post-doffing of PPE.MethodsThis was a randomised cross-over study conducted between 9 April to 5 May 2020 in the ED of University Malaya Medical Centre. Postgraduate Emergency Medicine trainees performed video laryngoscope-assisted intubation on an airway manikin with and without an aerosol box in a random order. Contamination was simulated by nebulised Glo Germ. Primary outcome was number of contaminated front and back body regions pre-doffing and post-doffing of PPE of the intubator and assistant. Secondary outcomes were intubation time, Cormack-Lehane score, number of intubation attempts and participants’ feedback.ResultsThirty-six trainees completed the study interventions. The number of contaminated front and back body regions pre-doffing of PPE was significantly higher without the aerosol box (all p values<0.001). However, there was no significant difference in the number of contaminations post-doffing of PPE between using and not using the aerosol box, with a median contamination of zero. Intubation time was longer with the aerosol box (42.5 s vs 35.5 s, p<0.001). Cormack-Lehane scores were similar with and without the aerosol box. First-pass intubation success rate was 94.4% and 100% with and without the aerosol box, respectively. More participants reported reduced mobility and visibility when intubating with the aerosol box.ConclusionsAn aerosol box may significantly reduce exposure to contaminations but with increased intubation time and reduced operator’s mobility and visibility. Furthermore, the difference in degree of contamination between using and not using an aerosol box could be offset by proper doffing of PPE.
BackgroundWhile emergency airway management training is conventionally conducted via face-to-face learning (F2FL) workshops, there are inherent cost, time, place and manpower limitations in running such workshops. Blended learning (BL) refers to the systematic integration of online and face-to-face learning aimed to facilitate complex thinking skills and flexible participation at a reduced financial, time and manpower cost. This study was conducted to evaluate its effectiveness in emergency airway management training.MethodsA single-center prospective randomised controlled trial involving 30 doctors from Sarawak General Hospital, Malaysia was conducted from September 2016 to February 2017 to compare the effectiveness of BL versus F2FL for emergency airway management training. Participants in the BL arm were given a period of 12 days to go through the online materials in a learning management system while those in the F2FL arm attended a-day of face-to-face lectures (8 h). Participants from both arms then attended a day of hands-on session consisting of simulation skills training with airway manikins. Pre- and post-tests in knowledge and practical skills were administered. E-learning experience and the perception towards BL among participants in the BL arm were also assessed.ResultsSignificant improvements in post-test scores as compared to pre-test scores were noted for participants in both BL and F2FL arms for knowledge, practical, and total scores. The degree of increment between the BL group and the F2FL arms for all categories were not significantly different (total scores: 35 marks, inter-quartile range (IQR) 15.0 – 41.0 vs. 31 marks, IQR 24.0 – 41.0, p = 0.690; theory scores: 18 marks, IQR 9 – 24 vs. 19 marks, IQR 15 – 20, p = 0.992; practical scores: 11 marks, IQR 5 -18 vs. 10 marks, IQR 9 – 20, p = 0.461 respectively). The overall perception towards BL was positive.ConclusionsBlended learning is as effective as face-to-face learning for emergency airway management training of junior doctors, suggesting that blended learning may be a feasible alternative to face-to-face learning for such skill training in emergency departments.Trial registrationMalaysian National Medical Research NMRR-16-696-30190. Registered 28 April 2016.Electronic supplementary materialThe online version of this article (10.1186/s12873-018-0152-y) contains supplementary material, which is available to authorized users.
Background Dengue is a systemic and dynamic disease with symptoms ranging from undifferentiated fever to dengue shock syndrome. Assessment of patients' severity of dehydration is integral to appropriate care and management. Urine colour has been shown to have a high correlation with overall assessment of hydration status. This study tests the feasibility of measuring dehydration severity in dengue fever patients by comparing urine colour captured by mobile phone cameras to established laboratory parameters. Methodology/Principal findings Photos of urine samples were taken in a customized photo booth, then processed using Adobe Photoshop to index urine colour into the red, green, and blue (RGB) colour space and assigned a unique RGB value. The RGB values were then correlated with patients' clinical and laboratory hydration indices using Pearson's correlation and multiple linear regression. There were strong correlations between urine osmolality and the RGB of urine colour, with r =-0.701 (red), r =-0.741 (green), and r =-0.761 (blue) (all p-value <0.05). There were strong correlations between urine specific gravity and the RGB of urine colour, with r =-0.759 (red), r =-0.785 (green), and r =-0.820 (blue) (all p-value <0.05). The blue component had the highest correlations with urine specific gravity and urine osmolality. There were moderate correlations between RGB components and serum urea, at r =-0.338 (red),-0.329 (green),-0.360 (blue). In terms of urine biochemical parameters linked to dehydration, multiple linear regression studies showed that the green colourimetry code was predictive of urine osmolality (β coefficient-0.082, p-value <0.001) while the blue colourimetry code was predictive of urine specific gravity (β coefficient-2,946.255, p-value 0.007). Conclusions/Significance Urine colourimetry using mobile phones was highly correlated with the hydration status of dengue patients, making it a potentially useful hydration status tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.