Advances in the field of metagenomics using culture-independent methods of microbial identification have allowed characterization of rich and diverse communities of bacteria in the lungs of healthy humans, mice, dogs, sheep and pigs. These data challenge the long held belief that the lungs are sterile and microbial colonization is synonymous with pathology. Studies in humans and animals demonstrate differences in the composition of airway microbiota in health versus disease suggesting respiratory dysbiosis occurs. Using 16S rRNA amplicon sequencing of DNA extracted from rectal and oropharyngeal (OP) swabs, bronchoalveolar lavage fluid (BALF), and blood, our objective was to characterize the fecal, OP, blood, and lower airway microbiota over time in healthy cats. This work in healthy cats, a species in which a respiratory microbiota has not yet been characterized, sets the stage for future studies in feline asthma in which cats serve as a comparative and translational model for humans. Fecal, OP and BALF samples were collected from six healthy research cats at day 0, week 2, and week 10; blood was collected at week 10. DNA was extracted, amplified via PCR, and sequenced using the Illumina MiSeq platform. Representative operational taxonomic units (OTUs) were identified and microbial richness and diversity were assessed. Principal component analysis (PCA) was used to visualize relatedness of samples and PERMANOVA was used to test for significant differences in microbial community composition. Fecal and OP swabs provided abundant DNA yielding a mean±SEM of 65,653±6,145 and 20,6323±4,360 sequences per sample, respectively while BALF and blood samples had lower coverage (1,489±430 and 269±18 sequences per sample, respectively). Oropharyngeal and fecal swabs were significantly richer than BALF (mean number OTUs 93, 88 and 36, respectively; p < 0.001) with no significant difference (p = 0.180) in richness between time points. PCA revealed site-specific microbial communities in the feces, and upper and lower airways. In comparison, blood had an apparent compositional similarity with BALF with regard to a few dominant taxa, but shared more OTUs with feces. Samples clustered more by time than by individual, with OP swabs having subjectively greater variation than other samples. In summary, healthy cats have a rich and distinct lower airway microbiome with dynamic bacterial populations. The microbiome is likely to be altered by factors such as age, environmental influences, and disease states. Further data are necessary to determine how the distinct feline microbiomes from the upper and lower airways, feces and blood are established and evolve. These data are relevant for comparisons between healthy cats and cats with respiratory disease.
It is unknown how the respiratory microbiome influences and is influenced by bacterial pneumonia in dogs, as culture of lung samples and not microbial sequencing guides clinical practice. While accurate identification of pathogens are essential for treatment, not all bacteria are cultivable and the impact of respiratory dysbiosis on development of pneumonia is unclear. The study purposes were to (1) characterize the lung microbiome in canine bacterial pneumonia and compare deviations in dominant microbial populations with historical healthy controls, (2) compare bacteria identified by culture vs. 16S rDNA sequencing from bronchoalveolar lavage fluid (BALF) culture-, and (3) evaluate similarities in lung and oropharyngeal (OP) microbial communities in community-acquired and secondary bacterial pneumonia. Twenty BALF samples from 15 client-owned dogs diagnosed with bacterial pneumonia were enrolled. From a subset of dogs, OP swabs were collected. Extracted DNA underwent PCR of the 16S rRNA gene. Relative abundance of operational taxonomic units (OTUs) were determined. The relative abundance of bacterial community members found in health was decreased in dogs with pneumonia. Taxa identified via culture were not always the dominant phylotype identified with sequencing. Dogs with community-acquired pneumonia were more likely to have overgrowth of a single organism suggesting loss of dominant species associated with health. Dogs with secondary bacterial pneumonia had a greater regional continuity between the upper and lower airways. Collectively, these data suggest that dysbiosis occurs in canine bacterial pneumonia, and culture-independent techniques may provide greater depth of understanding of the changes in bacterial community composition that occur in disease.
This Perspectives in Veterinary Medicine article seeks to define, describe putative causes, and discuss key diagnostic tests for primary and secondary bronchiolar disorders to propose a classification scheme in cats with support from a literature review and case examples. The small airways (bronchioles with inner diameters <2 mm), located at the transitional zone between larger conducting airways and the pulmonary acinus, have been overlooked as major contributors to clinical syndromes of respiratory disease in cats. Because the trigger for many bronchiolar disorders is environmental and humans live in a shared environment with similar susceptibility, understanding these diseases in pet cats has relevance to One Health. Thoracic radiography, the major imaging modality used in the diagnostic evaluation of respiratory disease in cats, has low utility in detection of bronchiolar disease. Computed tomography (CT) with paired inspiratory and expiratory scans can detect pathology centered on small airways. In humans, treatment of bronchiolar disorders is not well established because of heterogeneous presentations and often late definitive diagnosis. A review of the human and veterinary medical literature will serve as the basis for a proposed classification scheme in cats. A case series of cats with CT or histopathologic evidence of bronchiolar lesions or both, either as a primary disorder or secondary to extension from large airway disease or interstitial lung disease, will be presented. Future multi‐institutional and multidisciplinary discussions among clinicians, radiologists, and pathologists will help refine and develop this classification scheme to promote early and specific recognition and optimize treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.