In order to approach the performance of biological locomotion in legged robots, better integration between body design and control is required. In that respect, understanding the mechanics and control of human locomotion will help us build legged robots with comparable efficient performance. From another perspective, developing bioinspired robots can also improve our understanding of human locomotion. In this work, we create a bioinspired robot with a blended physical and virtual impedance control to configure the robot’s mechatronic setup. We consider human neural control and musculoskeletal system a blueprint for a hopping robot. The hybrid electric-pneumatic actuator (EPA) presents an artificial copy of this biological system to implement the blended control. By defining efficacy as a metric that encompasses both performance and efficiency, we demonstrate that incorporating a simple force-based control besides constant pressure pneumatic artificial muscles (PAM) alone can increase the efficiency up to 21% in simulations and 7% in experiments with the 2-segmented EPA-hopper robot. Also, we show that with proper adjustment of the force-based controller and the PAMs, efficacy can be further increased to 41%. Finally, experimental results with the 3-segmented EPA-hopper robot and comparisons with human hopping confirm the extendability of the proposed methods to more complex robots.
Abstract-Swing leg adjustment, repulsive leg function and balance are key elements in the control of bipedal locomotion. In simple gait models like spring-loaded inverted pendulum (SLIP), swing leg control can be applied to achieve stable running. The aim of this study is to investigate the ability of pendulum like swing leg motion for stabilizing running and reproducing a desired (human like) gait pattern. The employed running model consists of two sub-models: SLIP model for the stance phase and a pendulum based control for the swing phase. It is shown that with changing the pendulum length at each step, stable running gaits with widely different performances are achieved. The body vertical speed at take off is utilized as feedback information to tune the pendulum length as the control parameter. In particular, the effect of the pendulum length adjustment on the motion characteristics like horizontal speed, apex height and the stabilized system energy will be investigated. With this method key features of the human like swing leg motion e.g. leg retraction can be reproduced. Higher speeds correspond larger angular motion of each leg which is in agreement with experimental results in previous studies. The presented model also explains the swing-leg to stance-leg interaction mechanism which was not addressed in the underlying SLIP model. This conceptual model can be considered as a functional mechanical template for legged locomotion and can be used to build more complex models, e.g. having segmented legs or an upper body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.