CTX-M -lactamases are the most prevalent group of enzymes within the extended-spectrum -lactamases (ESBL). The therapeutic options for CTX-M-carrying isolates are scarce, forcing the reexamination of the therapeutic possibilities of -lactams plus -lactamase inhibitors (BBLIs). Inhibitor-resistant CTX-M -lactamases (IR-CTX-M) have not hitherto been described in natural isolates. In this study, 168 cultures of the hypermutagenic Escherichia coli GB20 strain carrying plasmid pBGS18 with different bla CTX-M genes were submitted to parallel experimental evolution assays in the presence of increasing concentrations of a combination of amoxicillin and clavulanate. Fourteen CTX-M -lactamases belonging to the three most representative clusters (CTX-M-1, -2, and -9) and the two main phenotypes (cefotaxime resistance and cefotaximeceftazidime resistance) were studied. Three types of IR-CTX-M mutants were detected, having mutations S130G, K234R, and S237G, which are associated with different resistance patterns. The most frequently recovered mutation was S130G, which conferred the highest resistance levels to BBLIs (reaching 12 g/ml for amoxicillin-clavulanate and 96 g/ml for piperacillin-tazobactam when acquired by CTX-M-1 cluster enzymes). The S130G change also provided a clear antagonistic pleiotropy effect, strongly decreasing the enzyme's activity against all cephalosporins tested. A double mutation, S130G L169S, partially restored the resistance against cephalosporins. A complex pattern observed in CTX-M-58, carrying P167S and S130G or K234R changes, conferred ESBL and IR phenotypes simultaneously. The K234R and S237G changes had a smaller effect in providing inhibitor resistance. In summary, IR-CTX-M enzymes might evolve under exposure to BBLIs, and the probability is higher for enzymes belonging to the CTX-M-1 cluster. However, this process could be delayed by antagonistic pleiotropy.
The rate at which mutations are generated is central to the pace of evolution. Although this rate is remarkably similar amongst all cellular organisms, bacterial strains with mutation rates 100 fold greater than the modal rates of their species are commonly isolated from natural sources and emerge in experimental populations. Theoretical studies postulate and empirical studies teort the hypotheses that these “mutator” strains evolved in response to selection for elevated rates of generation of inherited variation that enable bacteria to adapt to novel and/or rapidly changing environments. Less clear are the conditions under which selection will favor reductions in mutation rates. Declines in rates of mutation for established populations of mutator bacteria are not anticipated if such changes are attributed to the costs of augmented rates of generation of deleterious mutations. Here we report experimental evidence of evolution towards reduced mutation rates in a clinical isolate of Escherichia coli with an hyper-mutable phenotype due a deletion in a mismatch repair gene, (ΔmutS). The emergence in a ΔmutS background of variants with mutation rates approaching those of the normal rates of strains carrying wild-type MutS was associated with increase in fitness with respect to ancestral strain. We postulate that such an increase in fitness could be attributed to the emergence of mechanisms driving a permanent “aerobic style of life”, the negative consequence of this behavior being regulated by the evolution of mechanisms protecting the cell against increased endogenous oxidative radicals involved in DNA damage, and thus reducing mutation rate. Gene expression assays and full sequencing of evolved mutator and normo-mutable variants supports the hypothesis. In conclusion, we postulate that the observed reductions in mutation rate are coincidental to, rather than, the selective force responsible for this evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.